教案

分数除法教案

时间:08月07日 网络精选 教案 我要投稿

【精品】分数除法教案30篇

  知识的海洋等待我们探索!今天,让我们一起翻开那些关于分数除法教案的精彩篇章。它们是我们的向导,也是学习道路上的宝藏。拿起你的笔,让阅读与思考同行吧!

分数除法教案 篇1

  教学目标:

  1、通过实例,使学生知道分数除法的意义与整数除法的意义是相同的,并使学生掌握分数除以整数的计算法则。

  2、动手操作,通过直观认识使学生理解整数除以分数,引导学生正确地总结出计算法则,能运用法则正确地进行计算。

  3、培养学生观察、比较、分析的能力和语言表达能力,提高计算能力。

  教学重点:

  使学生理解算理,正确总结、应用计算法则。

  教学难点:

  使学生理解整数除以分数的算理。

  教具准备:多媒体课件

  教学过程:

  一、旧知铺垫(课件出示)

  1、复习整数除法的意义

  (1)引导学生回忆整数除法的计算法则:已知两个因数的积与其中一个因数,求另一个因数的运算。

  (2)根据已知的乘法算式:5x6=30,写出相关的两个除法算式。(30÷5=6,30÷6=5)

  2、口算下面各题

  x3xx

  xx6x

  二、新知探究

  (一)、教学例1

  1、课件出示自学提纲:

  (1)出示插图及乘法应用题,学生列式计算。

  (2)学生把这道乘法应用题改编成两道除法应用题,并解答。

  (3)将100克化成千克,300克化成千克,得出三道分数乘、除法算式。

  2、学生自学后小组间交流

  3、全班汇报:

  100x3=300(克)

  A、3盒水果糖重300克,每盒有多重?300÷3=100(克)

  B、300克水果糖,每盒100克,可以装几盒?300÷100=3(盒)

  x3=(千克)÷3=(千克)÷3=3(盒)

  4、引导学生通过整数题组和分数题组的对照,小组讨论后得出:

  分数除法的意义与整数除法相同,都是已知两个因数的积与其

  中一个因数,求另个一个因数。都是乘法的逆运算。

  (二)、巩固分数除法意义的练习:P28“做一做”

  (三)、教学例2

  (1)学生拿出课前准备好的纸,小组讨论操作,如何把这张纸的平均分成2份,并通过操作得出每份是这张纸的几分之几。

  (2)小组汇报操作过程,得出:将一张纸的平均分成2份,每份是这张纸的。

  (3)引导学生数形结合,对照不同的折法,说出两种不同的计算方法。

  A、÷2==,每份就是2个。

  B、÷2=x=,每份就是的。

  (4)如果把这张纸的平均分成3份呢?让学生从上面两种方法中选择一种进行计算,通过操作对比,让学生发现第二种方法适用的范围更广。

  4、引导学生观察÷2和÷3两个算式,概括出分数除以整数的计算法则:分数除以整数,等于乘上这个整数的倒数。

  三、当堂测评(课件出示)

  1、计算

  ÷3÷3÷20÷5÷10÷6

  2、解决问题

  (1)、一辆货车2小时耗油10/3升,平均每小时耗油多少升?

  (2)、正方形的周长是4/5米,它的边长是多少米?

  学生独立完成。

  教师讲评,小组间批阅。

  四、课堂总结

  1、今天我们学习了哪些内容?(分数除法的意义及分数除以整数的计算法则)

  2、谁来把这两部分内容说一说?

  教学后记

分数除法教案 篇2

  教学目标:

  使学生理解一个数除以分数的算理,掌握一个数除以分数的计算法则,能够正确地进行计算。

  教学重点:

  掌握分数除法的计算法则。

  教学过程:

  一、复习

  说出下列分数的倒数。

  二、新课

  1、教学例3

  提问:按照题意应该怎样列式?(生说师板书)

  想一想:分数除以分数应该怎样计算?(学生回答计算步骤,教师板书)÷=x==3

  教师:分数除以分数的计算方法跟整数除以分数有什么联系?

  让学生总结:(整数除以分数,被除数不变,把除法转化成乘法,也就是转化成乘原分数的倒数。分数除以分数,也是被除数不变,把除以分数转化成乘除数的倒数。)也就是:(教师板书)一个数除以分数,等于这个数乘以除数的倒数。

  学生看书P29读法则。

  教学分数除法的统一法则。

  做完后让学生进行对比,三道题的计算过程有什么相同点?(第一题是乘整数的倒数,第2、3题是乘分数的倒数。)

  教师提问:整数能否看成分数?(可以看成分母是1的分数)

  教师:前面学过的分数除以整数和一个数除以分数的计算法则,能否统一成一个法则呢?(可以,这就是:甲数除以乙数(0除外),等于甲数乘乙数的倒数。教师板书)

  学生看书P30并读统一的法则。

  三、巩固练习

  1、做P30例4前面的做一做题目。学生独立完成,然后集体订正,订正时让学生说一说法则。

  2、做练习八第5题第1行的小题。第6题的前两栏的题目。

  3、做第7题。注意引导学生列式,(这是求一个数是另一个数的几倍或几分之几的文字题。用除法计算。)

  4、做练习八的第8题。

  学生做后教师让学生说一说想法。

  5、做练习八第9题。

  做题前提问:1米等于多少厘米?1千米等于多少米?1吨等于多少千克?1小时等于多少分?然后让学生独立做题,做完后集体订正。做练习八第10题。教师让学生独立审题,然后提问:这题求什么?分析以后,让学生独立完成,集体订正。

  四、小结

  教师先问学生今天学习了什么?然后指出:分数除法法则是除法普遍适用的法则。

  五、作业

  练习八第5题第2行的小题,第6题的第3、4栏小题。

分数除法教案 篇3

  教学目标

  1、使学生掌握列方程解答已知一个数的几分之几是多少,求这个数的应用题的解答方法

  2、培养学生分析问题、解答问题能力,以及认真审题的良好习惯。

  教学重点

  找准单位1,找出等量关系。

  教学难点

  能正确的分析数量关系并列方程解答应用题。

  教学过程

  一、复习、引新

  (一)确定单位1

  1、铅笔的支数是钢笔的倍。

  2、杨树的棵数是柳树的。

  3、白兔只数的是黑兔。

  4、红花朵数的相当于黄花。

  (二)小营村全村有耕地75公顷,其中棉田占。小营村的棉田有多少公顷?

  1、找出题目中的已知条件和未知条件。

  2、分析题意并列式解答。

  二、讲授新课

  (一)将复习题改成例1

  例1、小营村有棉田45公顷,占全村耕地面积的,全村的耕地面积是多少公顷?

  1、找出已知条件和问题

  2、抓住哪句话来分析?

  3、引导学生用线段图来表示题目中的数量关系。

  4、比较复习题与例1的相同点与不同点。

  5、教师提问:

  (1)棉田面积占全村耕地面积的,谁是单位1?

  (2)如果要求全村耕地面积的是多少,应该怎样列式?(全村耕地面积)。

  (3)全村耕地面积的就是谁的面积?(就是棉田的面积)

  解:设全村耕地面积是公顷。

  答:全村耕地面积是75公顷。

  6、教师提问:应怎样进行检验?你还能用别的方法来解答吗?

  (1)把代入原方程,左边,右边是45,左边=右边,所以是原方程的解。)

  (公顷)

  (根据棉田面积和是已知的,全村耕地面积是未知的,根据分数除法意义,已知两个因数的积与其中一个因数,求另一个因数应该用除法计算。)

分数除法教案 篇4

  教学目标:

  使学生掌握用方程解答已知一个数的几分之几是多少求这个数的题目。

  教学重点:

  分析题里所含的数量关系,把哪个数看作单位1。

  教学难点:

  怎样列出方程。

  教学过程:

  一、复习

  列式计算,并口述把哪个数看作单位1。

  (1)的是多少?()看作单位1。

  (2)14的是多少?()看作单位1。

  (3)1的是多少?()看作单位1。

  二、新授

  1、板书课题:列方程解文字题

  2、出示例4:一个数的是,这个数是多少?

  (1)分析数量关系

  提问

  ①这道文字题与刚才复习时的文字题有什么联系和区别?(使学生明白它们的数量关系一样,只是已知未知不同)

  ②硬该把哪个数看作单位1?为什么?

  ③单位1所表示的数知道吗?

  ④怎样求单位1所表示的“这个数”?(引导学生用设未知数X的方法来解决)。

  使学生明确:根据一个数乘以分数的意义。

  由已知:一个数的是,得:一个数x=?

  (2)列方程解文字题。

  第一步,设未知数为X。教师板书

  解:设这个数是X。

  第二步,根据题意列出方程。教师板书

  Xx=

  第三步,解这个方程。教师板书:(略)

  第四步,检验:(略)

  第五步:作答

  3、小结

  (1)怎样设求知数?

  要求单位“1”的量,设单位“1”的量为X。

  (2)样根据题意列方程?

  找出题中数量之间的等量关系。

  三、巩固练习

  1、教科书第35页“做一做”。

  2、一个数的1倍等于2,求这个数。

  四、课堂练习

  练习九第12、16—19题。

  五、作业

  练习九第13—15题。

  六、课外思考

  练习九思考题。让学生发现规律:第(1)题,后一个数是前一个分数的。第(2)题,把带分数化成假分数。后一个分数的分母是前一个分数分母的2倍;而分子是前一个分数分子的3倍。

分数除法教案 篇5

  教学要求:

  1、使学生认识分数除法应用题的特点,能根据应用题的特点理解解题思路和解题方法,学会解答已知一个数的几分之几是多少求这个数的应用题。

  2、进一步培养学生自主探索问题解决的能力和分析、推理和判断等思维能力,提高解答应用题的能力。

  教学重难点:

  分数除法应用题的特点及解题思路和解题方法。

  教学过程:

  一、复习

  1、根据条件说出把哪个数量看作单位1。

  (1)棉田的面积占全村耕地面积的2/5。

  (2)小军的体重是爸爸体重的3/8。

  (3)故事书的本数占图书总数的1/3。

  (4)汽车速度相当于飞机速度的1/5。

  2、找单位1,并说出数量关系式。

  (1)白兔的只数占总只数的2/5。

  (2)甲数正好是乙数的3/8。

  (3)男生人数的1/3恰好和女生同样多。

  3、一个儿童体重35千克,他体内所含水分占体重的4/5,他体内的水分有多少千克?

  集体订正时,让学生分析数量关系,说出把哪个数量看作单位1,并说出解答这个问题的数量关系式,即:体重4/5=体内水分的重量。同学们都能正确分析和解答分数乘法应用题,分数除法应用题又如何解答呢?今天这节课我们就一起来研究。(板书课题:分数除法应用题)

  二、新授

  1、教学例1。一个儿童体内所含的水分有28千克,占体重的4/5。这个儿童体重有多少千克?

  (1)指名读题,说出已知条件和问题。

  (2)共同画图表示题中的条件和问题。

  (3)分析数量关系式

  提问:根据水份占体重的4/5,可以得到什么数量关系式?

  学生回答后,教师说明:例1和复习题的第二个已知条件相同,因此单位1相同,数量关系式也相同,都是把体重看作单位1,数量关系式是:体重4/5=体内水分的重量。

  根据学生的回答,把线段图进一步完善。

  提问:根据题目的条件,我们已经找到了这一题的数量关系式:体重4/5=体内水分的重量。现在已知体内水分的重量,要求儿童体重有多少千克,可以用什么方法解答?(引导学生说出用方程解答。)

  让学生试列方程,并说出方程表示的意义。

  让学生把方程解完,并写上答案。

  出示教材的检验,提问:要检验儿童的体重是不是正确,应该怎样做?(用求出的体重乘4/5,看看是不是等于水分的千克数。)

  2、比较。

  提问:我们再把例1与复习题比较,看看这两题有什么相同的地方,有什么不同的地方?

  根据学生的回答,帮助学生整理出:

  (1)看作单位1的数量相同,数量关系式相同。

  (2)复习题单位1的量已知,用乘法计算;

  例1单位1的量未知,可以用方程解答。

  (3)因为它们的数量关系式相同,所以这两种题目的解题思路是一致的,都是先找出把哪个数量看作单位1,根据单位1是已知还是未知,再确定是用乘法解还是方程解。

  三、巩固练习

  1、做书P34做一做

  要求学生先按照题目中的想说出想的过程,说出数量关系式,再列方程解答。订正时要说一说是按照什么来列方程的。

  2、做练习九第1题。

  先让学生找出把哪个数量看作单位1,说出数量关系式,再列方程解答。

  四、小测:(略)

  五、小结:这节课我们研究了什么问题?解答分数应用题的关键是什么?单位1已知用什么方法解答?未知呢?

  六、布置作业

  练习九第2题

  教后反思:学生在已学过的分数乘法应用题的基础上,能找出关键句,并根据关键句说出相对的数量关系式。为孩子创造做数学的机会,通过让学生积极参与知识的形成过程,让学生运用已有的知识经验,从不同的角度,用不同方法获取新知识,在不同程度上都得到发展。使学生不但知其然,还知其所以然。同时又使学生的观察力、想象力、思维能力和创新能力得到培养和发展,在学会的过程中达到会学的目的。

  再根据题目的条件判断单位1的量,是已知的就乘法计算;单位1的量是未知的就用方程来解答;并学会了怎样验算。教学中不仅要重视知识的最终获得,更要重视学生获取知识的探究过程。结论仅是一个终结点,而探究结论、揭示结论的过程则是由无数个点组成的线、面、体,在探究的过程中,只有让学生动手做数学,学生很可能获得超出结论自身的价值的若干倍的数学知识。

  小测:列出数量关系式,并列式解答。

  1、六年一班有三好学生9人,正好占全班人数的1/5,全班有多少人?(用方程解)

  2、一瓶油吃了3/5,正好是300克,这瓶油重多少克?(用方程)

  小测:列出数量关系式,并列式解答。

  1、六年一班有三好学生9人,正好占全班人数的1/5,全班有多少人?(用方程解)

  2、一瓶油吃了3/5,正好是300克,这瓶油重多少克?(用方程)

分数除法教案 篇6

  教学目标

  1、使学生理解两个整数相除的商可以用分数来表示。

  2、明确分数与除法的关系,加深学生对分数意义的理解。

  教学重点

  理解、归纳分数与除法的关系。

  教学难点

  用除法的意义理解分数的意义。

  教学步骤

  一、铺垫孕伏。

  1、读题说得数。

  3.2+1.68、0.8x0.5、14-7.4、0.3÷1.5、4.8x0.02

  7.8+0.9、1.53-0.7、0.35÷15、0.4x0.8、0.8-0.37

  2、口述表示的意义。

  3、列式计算。

  (1)把40棵树苗平均分给5个小组栽,每组栽多少棵?

  (2)把8米长的钢管平均分成2段,每段长多少米?

  二、探究新知。

  1、新课导入。

  出示例2:把1米长的钢管平均截成3段,每段长多少米?

  板书:1÷3

  教师提问:1÷3的结果能用准确的数表示出来吗?怎么办?学习了分数与除法的关系就明白了。(板书、分数与除法)

  2、教学例2。

  (1)从分数的意义上理解1÷3,即把1米长的钢管着成单位“1”,把单位“1”平均分成3份,表示这样一份的数,可用分数来表示,1米的就是米。(板书米)

  (2)学生完整叙述自己想的过程。

  (3)反馈练习。

  ①把1米长的钢管,平均分成8段,每段长多少?

  ②把1块饼平均分给5个同学,每个同学得到多少块?

  3、教学例3。

  出示例3:把3块饼平均分给4个孩子,每个孩子分得多少块?

  (1)读题列式:3÷4

  (2)动手操作:怎样把3块饼平均分给4个同学呢?

  (3)学生交流。

  甲生:先把每个圆剪成4个块,然后把12个平均分成4份,再把3个拼在一起,每份是块。

  乙生:把3个圆放在一起,平均分成4份后,剪下其中的一份,再把1份中的3个拼在一起,得到每个分块。(在3÷4后板书块)

  (4)看图根据乙生分饼的过程说出表示的意义。

  ①乙生把3块饼平均分成了4份,这样的一份是3块饼的,即

  ②甲生把1块饼平均分成了4份,表示这样的3份的数是。

  (5)都是,意义有何不同?(结合算式说出的两种意义)

  明确:表示把3平均分成4份,取其中的1份;

  还表示把单位“1”平均分成4份,取这样的3份。

  (6)反馈练习:说说下面分数的两种意义

  4、归纳分数与除法的关系。

  (1)教师提问:怎样用分数来表示整数除法的商呢?

  学生归纳:可以用分数表示整数除法的商,用除数做分母,用被除数作分子。也就是说分数既表示分数的意义,又表示整数除法的商。

  (板书:)

  教师明确:分数是一种数,除法是一种运算,所以确切地说,分数的分子相当于除法的被除数,分数的分母相当于除法的除数。

  (2)讨论:用字母表示分数与除法的关系有什么要求?

  (3)反馈练习。

  三、全课小结。

  通过今天的学习,你明白了什么?

  四、随堂练习。

  1、填空。

  分数可以用来表示除法算式的()。其中分数的分子相当于(),分母相当于()。

  2、用分数表示下列各式的商。

  4÷511÷1327÷35

  9÷913÷1633÷29

  3、列式计算。

  (1)把5米长的.绳子,平均分成12段,每段长多少米?

  (2)把一个4平方米的圆形花坛分成大小相同的5块,每一块是多少平方米?

  (用分数表示)

  (3)小明用15分钟走了1千米路,平均每分走几分之几千米?

  五、布置作业。

  用分数表示下面各式的商。

  3÷47÷1216÷4925÷249÷9

分数除法教案 篇7

  教学内容:

  分数乘法、除法计算练习

  教学目标:

  1、通过练习,更好地掌握分数乘法和分数除法的计算方法,形成相应的计算技能,提高计算能力,培养良好的计算习惯。

  2、通过练习,进一步提高运用分数乘法计算解决简单的实际问题的能力。

  3、通过练习,进一步体会数学知识之间的内在联系,感受数学知识和方法的应用价值,增强学好数学的信息。

  教学重、难点:

  掌握运用分数乘法解决简单实际问题的基本思路与方法。

  教学对策:

  设计一些找单位1的量和分析数量关系式的练习,多组织学生说思考过程,通过交流感受一些方法。

  教学准备:

  自制投影片或小黑板

  教学过程:

  一、揭示课题

  谈话:国庆长假之前,我们学习了分数乘法和分数除法的有关内容,在计算中,同学们还存在一些问题,所以今天这节课,我们将进行相关练习,帮助大家更好地掌握这些知识。(板书课题:分数乘法和分数除法)

  二、基本练习

  1、计算练习。

  5/129/10 3410/51 22/3926/11

  10/2112/257/8 3/20145/7

  8/15 6 11/622 2515/16 812/13

  11/1222/9 15/165/12 5/1410/21

  学生任选3道乘法、3道除法进行计算,同时指名学生板演,教师及时结合学生计算情况进行讲评。

  组织学生小结分数乘法和分数除法的计算方法。

  2、解方程。

  12x=9/11 3/8x=9/10 6/5x=15

  学生先独立完成,再指名学生板演,结合板演情况进行讲评时指出解方程的格式及依据,及时纠正学生计算中的错误。

  3、在○里填上、或=。

  5/711/13○5/7 7/916○7/91/16

  5/71○5/7 5/77/5○5/7

  6/73/5○6/7 3/84/ 3○3/8

  110/9○1 8/111○8/1

  学生不计算,通过已学知识进行判断,然后交流判断理由。

  教师及时组织学生小结:

  一个数乘真分数,结果小于这个数;一个数乘以1,结果等于这个数;一个数乘比1大的假分数,结果大于这个数。

  一个数除以真分数,结果大于这个数;一个数除以1,结果还等于这个数;一个数除以比1大的假分数,结果小于这个数。

  4、根据已知条件找准单位1的量并说说数量关系式。

  (1)白兔只数的5/12是黑兔的只数。

  (2)已经修了公路全长的3/4。

  (3)今年棉花产量比去年增加1/8。

  (4)第三季度冰箱价格比第二季度便宜1/10。

  (5)二班植树棵数相当于一班的9/8。

  (6)还剩这堆煤的3/8。

  学生同桌之间进行练习,每人选3题说说数量关系,然后指名交流。

  5、解决实际问题。

  (1)小明用3/10小时走了15/16千米,平均每小时走多少千米?照这样的速度,小明走1千米要多少小时?

  (2)一种柴油2/3升重8/15千克。1升这样的柴油重多少千克?1千克这样的柴油有多少升?

  (3)鹅的孵化期是30天,鸡的孵化期是鹅的7/10,鸭的孵化期是鸡的4/3倍,鸭的孵化期是多少天?

  (4)一个乒乓球从50分米的高度下落,每次弹起的高度是下落时高度的2/5,第三次下落时能弹起多少分米?

  (5)一盒鲜牛奶的净含量是3/2升,一盒酸奶的净含量是鲜牛奶的2/15。一盒酸奶的净含量是多少升?

  (6)一盒鲜牛奶的净含量是3/2升,一盒酸奶的净含量比鲜牛奶少13/15。一盒酸奶比一盒鲜牛奶少多少升?

  (7)一盒鲜牛奶的净含量是3/2升,一盒酸奶的净含量是1/5升。一盒酸奶的净含量比一盒鲜牛奶少多少升?

  学生独立完成后进行交流,主要交流思考过程。

  三、全课总结

  评价一下自己的练习情况,分析一下还存在什么问题。

  课后反思:

  按照课前的教学设想,我先组织学生进行了分数乘、除法计算练习,然后进行了分析数量关系式的练习,最后进行了解决实际问题的练习。课堂上学习效果还不错。

  但从学生作业情况看,有些学生解决实际问题时,还未认真读题就列式计算,这样就存在一个问题,当天所学的如果是分数乘法,这部分学生在解题时就会全部用乘法来解决问题;如果今天学的是分数除法,他们就全部用除法来计算。也就是说完全是模仿,没有自己的理解和对问题的思考、分析。长此下去,造成的后果是严重的。所以要把问题杜绝在源头,在练习过程中,我经常组织学生进行对比练习,逼着他们要独立思考,让他们感到没有自己的思考是无法正确解答题目的。

分数除法教案 篇8

  教学目标

  1、使学生学会掌握“已知一个数的几分之几是多少,求这个数”的应用题的解答方法,能熟练地列方程解答这类应用题。

  2、进一步培养学生自主探索问题解决的能力和分析、推理和判断等思维能力,提高解答应用题的能力。教学重点:弄清单位“1”的量,会分析题中的数量关系。教学:难点:分数除法应用题的特点及解题思路和解题方法。

  教学重难点

  教学重点:弄清单位“1”的量,会分析题中的数量关系。

  教学难点:分数除法应用题的特点及解题思路和解题方法。

  教学过程

  一、复习

  出示复习题:

  1、下面各题中应该把哪个量看作单位“1”?

  2、用方程解下列各题。

  3、根据测定,成人体内的水分约占体重的2/3,而儿童体内的水分约占体重的4/5,六年级学生小明的体重为35千克,他体内的水分有多少千克?

  让学生观察题目,看看题目中所给的三个条件是否都用得上,并说说为什么。

  选择解决问题所需的条件,确定出单位“1”,并引导学生说出数量关系式。

  小明的体重x4/5=体内水分的重量。

  4、指名口头列式计算。课件出示。

  二、新授

  1、教学例1

  根据测定,成人体内的水分约占体重的2/3,而儿童

  体内的水分约占体重的4/5,小明体内有28千克水分,

  他的体重是爸爸体重的7/15,小明的体重是多少千克?

  爸爸的体重是多少千克?

  例1的第一个问题:小明的体重是多少千克?

  (1)读题、理解题意,并画出线段图来表示题意:

  (2)引导学生结合线段图理解题意,分析题中的数量关系式,并写出等量关系式。小明的体重x4/5=体内水分的重量

  (3)这道题与复习题相比有什么相同点和不同点?

  (相同点是它们的数量关系是一样的;不同点是水分28千克,水分占体重的4/5。体重?千克水分28千克已知条件和问题变了)

  (4)这道题什么是单位“1”?单位“1”是已知的还是未知的?怎样求?(引导学生根据数量关系式,将未知的单位“1”设为x,列方程来解决问题)

  (5)启发学生应用算术解来解答应用题。

  先在小组内独立解答。

  课件演示计算的算式。

  (根据数量关系式:小明的体重x4/5=体内水分的重量,

  反过来,体内水分的重量÷4/5=小明的体重)。

  2、解决第二个问题:小明的体重是爸爸的7/15,爸爸的体重是多少千克?

  (1)启发学生找到分率句,确定单位“1”。

  (2)让学生选择一种自己喜爱的解法进行计算,独立解决第二个问题。

  (3)指名说说自己是怎样理解题意的,并与其他同学交流自己的解题思路。(课件出示线段图)

  爸爸:

  小明:

  根据数量关系式:爸爸的体重x7/15=小明的体重

  小明的体重÷7/15=爸爸的体重

  ①解方程:解:设爸爸的体重是x千克。

  7/15x=35

  x=35÷7/15

  x=75

  ②算术解:35÷7/15=75(千克)

  课件演示计算的算式。

  3、用方程解应用题应注意哪些问题

  首先要弄清题里有哪些数量,它们之间有什么样的关系,然后找出题中数量间

  的等量关系,再确定设哪个量为x,并列出方程。

  4、巩固练习:P38“做一做”课件出示:

  学校有科普读物320本,占全部图书的2/5,科普读物相当于故事书的4/3,图书馆共有多少本书?图书馆有多少本故事书?(学生先独立审题完成,然后全班再一起分析题意、评讲)

  三、巩固应用

  1、小明看一本课外读物,周末看了35页,正好是这本书的5/7,这本课外读物一共有多少页?

  (先分析数量关系式,然后确定单位“1”,最后再进行解答。)

  2、一杯约250ml的鲜牛奶大约含有3/10g的钙质,占一个成年人一天所需钙质的3/8。一个成年人一天大约需要多少钙质?

  (注意引导学生发现250ml的鲜牛奶是多余条件)

  3、人造地球卫星的速度是8千米/秒,相当于宇宙飞船的40/57,宇宙飞船的速度是多少?

  (引导学生先分析数量关系式,然后确定单位“1”,再根据数量关系式进行计算)

  4、小军家爸爸每月工资是1500元,妈妈每月工资是1000元,家里每月开支大约要占爸爸妈妈两人工资的3/5,小军家每月开支大约是多少元?

  独立完成后订正。

  四、课堂总结

  这节课我们学习了分数应用题中“已知一个数的几分之几是多少求这个数的应用题”,我们知道了,如果分率句中的单位“1”是未知的话,可以用方程或除法进行解答。

分数除法教案 篇9

  教学目标

  1、通过观察、探究,理解分数与除法的关系,并会用分数表示两个数相除的商。

  2、经历分数与除法的关系的探究过程,明确可以用分数表示两个数相除的商

  3、通过观察、探究,渗透辩证思想,激发学生学习兴趣。

  教学重难点

  教学重点:

  掌握分数与除法的关系,会用分数表示两个数相除的商。

  教学工具

  多媒体课件,圆形纸片,剪刀

  教学过程

  一、创设情境,导入新课,

  师:同学们过生日都要吃生日蛋糕,喜欢吃吗?(生:喜欢)

  1.师:今天老师就带来了8个小蛋糕把8个小蛋糕平均分给4个人吃,每人分得多少个?

  怎么列式?生:8÷4=2(个)

  2.师:把8个小蛋糕变成1个大蛋糕把1个大蛋糕平均分给4个人吃,每人分得多少个?

  怎么列式?生:1÷4=

  二、动手操作,探索新知

  1、探索一个物体平均分,体会分数与除法的关系。

  (1)师:每人分得多少个?请同学们利用这张白色的圆形纸片,折一折,分一分,看看到底是多少个?生动手折纸,思考

  生:把1个蛋糕看作单位“1”,把它平均分给4个人,也就是平均分成4份,每人分得其中的一份,也就是这1个蛋糕的1/4,就是1/4个蛋糕

  (2)师:把1个蛋糕平均分给3个人,每人分得多少多少个?怎么列式?

  生独立思考并回答。

  全班交流,明确:求每人分得多少个,要把1个蛋糕平均分成3份,用除法计算;而把“1”平均分成3份,表示这样一份的数,可以用分数()来表示。所以1÷3=()(个)

  2、探索多个物体平均分,体会分数与除法的关系。

  师:把3个蛋糕平均分给4个人,每人分得多少个?

  师:怎样分公平?每人分得多少个?下面,利用你手中的学具3张圆形纸片,小组合作,分一分,剪一剪。

  (1)充分交流、展示学生的想法与做法(可能出现以下几种情况)。

  方法一:一张一张分,把每个蛋糕分别平均分成4份,共12份,每人分到3份,3个(1/4)张拼在一起得到(3/4)个。

  方法二:三个蛋糕摞在一起,平均分成4份,每人分到1份,1份中有3个(1/4)个,拼在一起得到(3/4)个。

  (2)演示:(突出方法二中3个的1/4就是1个的3/4,深化3/4的意义)无论哪一种方法我们都得到:3个蛋糕平均分给4个人,每人分到的就是3/4个蛋糕。即:3÷4=()(个)(板书)

  (3)在这里,3/4就有两层含义:既表示1个的蛋糕的3/4,又表示3个蛋糕的1/4

  (4)师:同学们真了不起,老师还想考考你们:如果把5个蛋糕平均分给7个人,每人分得多少个呢?你能想象一下分的过程吗?好好想一想,并和同学交流一下。

  学生汇报,明确:5个蛋糕的1/7就是1个蛋糕的5/7,即:5÷7=5/7(个)(板书)(5)师:刚才我们是分的蛋糕,现在我们来分分绳子。把3根绳子平均分成5份,每份是多少根?怎么列式?学生思考后回答:3÷5=3/5(根)(课件演示)

  3、总结概括分数与除法之间的关系。

  1÷4=(个)3÷4=(个)

  5÷7=(个)3÷5=(个)

  师:观察黑板上的这些算式,你发现了什么?

  三、观察算式,概括分数与除法的关系。

  (1)请同学们观察这两组算式,你发现分数与除法有什么关系?请观察思考一下,并把你的发现和同学交流一下。

  (2)生汇报:我发现除法算式中的被除数相当于分数的分子,除法算式中的除数相当于分数的分母,除法算式的除号相当于分数的分数线。师补充:除法算式的商相当于分数的分数值。

  师强调:相当于

  (3)师:请每个同学看着这些算式说一说分数与除法的关系。

  (师板书):被除数÷除数=被除数/除数

  提问:我们能不能反过来说,分数的分子相当于什么?谁来说一说?

  生:分数的分子相当于除法算式中的被除数,分数的分母相当于除数,分数线相当于除号。

  (4)师:如果用a表示被除数,b表示除数,二者的关系可以用字母表示成:a÷b=a/b

  讨论:用字母表示分数与除法的关系,b是否可以是任何数?为什么?补充板书(b≠0)师板书:a÷b=a/b(b≠0)提问:为什么b≠0?(因为除数不能为0,所以b不能为0。)

  师:分数与除法有着如此紧密的联系,那么它们之间有没有区别呢?(学生说不出可以引导)

  小组议一议再全班交流,明确:分数是一种数,也可以表示两数相除;而除法是一种运算。

  三、练习巩固应用

  1、你能很快说出这些算式的商吗?3÷8=5÷9=7÷13=4÷7=40÷56=12÷61=

  2、把1千克葡萄干平均装在2个袋子里,每袋重多少千克?怎么列式?

  把1千克葡萄干平均装在3个袋子里,每袋重多少千克?怎么列式?

  把2千克葡萄干平均装在3个袋子里,每袋重多少千克?怎么列式?

  四、全课小结今天这堂课你有什么收获?还有什么问题吗?

分数除法教案 篇10

  【教学内容】

  【教学目标】

  知识目标:

  体验整数除以分数的计算方法,在讨论交流的基础上总结出计算法则,并能正确的计算。

  能力目标:

  培养学生动手动脑能力,以及判断、推理能力。通过分析的出结论。

  情感目标:

  培养学生愿意交流合作,喜欢数学的情操,感受数学来源于生活,体验操作的欢乐。

  【教学重点】

  整数除以分数的计算法则推导过程。

  【教学难点】

  理解一个数除以分数的计算法则的推导过程,

  【教学过程】

  一、创设情境导入新课

  唐僧师徒西天取经路上,有一天,孙悟空化了4张饼回来八戒急着要吃,孙悟空为难八戒说:“想吃饼也容易,先回答几个问题,答上来就吃!”这下可馋坏了八戒,聪明的小朋友,你有什么好办法来帮帮八戒吗?

  二、自主探究合作交流

  1、小组活动

  (1)出示教材27页“分一分”的第(1)、(2)题

  学生拿出准备好的圆片代表饼,动手分一分。

  每2张一份,可以分成多少份?4÷2=2(份)

  每1张一份,可以分成多少份?4÷1=4(份)

  师:每1/2张一份,可以分成多少份?

  学生动手操作,组内交流,把每个圆都平均分成2份,一共可以分成8份。4÷1/2=8(份)

  师:每1/4张一份,可以分成多少份?

  学生对那个手操作,把每个圆片都平均分成4份,一共可以分成16份。

  4÷1/4=16(份)

  (1)出示教材27页“画一画”学生在练习本上画。在组内交流计算方法。

  (2)学生独立完成教材28页“填一填”“想一想”

  师:通过刚才的“分一分”、“画一画”、“填一填”、“想一想”等活动,你发现了什么?

  生:一个数除以分数等于乘这个分数的倒数。

  1、学生独立完成28页的“试一试”。

  集体反馈,同桌之间订正。

  师:通过刚才的计算你发现了什么?

  生:一个数除以一个数(零除外)等于乘这个数的倒数。

  三、课堂练习,巩固运用

  书本练一练

  四、课堂小结畅谈收获

  聪明的小朋友们,八戒在你们的帮助下吃到了饼,也有了新的收获,你们知道它的收获是什么吗?

  (学生谈收获)

  【板书设计】

  整数除以分数

  a÷=ax(b、c≠0)

  【教学反思】

  本节课是北师大版数学第十册第三单元《分数除法》中的第三节课。本节课旨在借助图形语言,在操作活动中理解一个数除以分数的意义和计算方法。为此,根据本节课教材的特点,结合学生已有的个体经验,本节课做了如下三个层次的设计:

  第一层次:“分一分”的活动。通过学生动手分饼活动,让学生经过观察、比较与思考,发现整数除以整数与整数除以分数知识间的内在联系,借助图形语言,初步感知体会“除以一个数”与“乘这个数的倒数”之间的关系。这样做不仅为学生创设了一个更好理解分数除法意义的机会,更主要的是教会学生一种学习的方法,即分数除法的意义可联系整数除法的意义进行学习。最后,通过启发性的问话:“观察这一组算式,你有什么发现?”激发学生思考、求知、解答的愿望,为下一步的探究做了很好的铺垫。

  第二层次:“画一画”的活动。在第一层次分饼的基础上分线段,虽然线段图比圆形图更抽象,但学生已有分饼的经验,所以学生根据问题不难列出算式,怎样求出结果就成为这一操作活动要解决的问题。其中(1)(2)小题比较容易,学生从图上可以看出结果,关键是第三小题不容易突破,是本节课教学的难点。主要是让学生弄清第(2)小题的算理,再将此方法迁移到地(3)小题。

  第三层次:“想一想、填一填”的活动。由于学生有了前面操作的基础,这部分比较大小的题目,他们不难填出答案。但关键是让学生观察、比较、分析,从而发现题目中蕴含的规律。这一活动是学生对前面问题思考过程的整理,对分数除法意义进一步的理解。

  第四层次:实践应用活动。是学生应用所学知识解决实际问题,巩固、内化知识的过程。

分数除法教案 篇11

  一、复习

  1、口算分数乘法

  前一段时间,我们已经学习了分数乘法,那么,谁能告诉老师分数乘法怎样计算的?说得真好。下面,我们就一起来口算几道题:

  (出示)4/71/3203/43/8162/33/2

  2、(复习倒数)其中当计算完2/33/2时提问:

  看到这个答案,你想说什么?(乘积是1的两个数互为什么数(互为倒数))

  说得不错,下面就请同学们说说下面各数的倒数分别是什么?

  (出示)3/8412/9

  3、把100千克的一桶油平均分成2分,每份是100千克的()/(),求100千克的1/2,列式为——

  把24千克的一袋面粉平均分成3份,每份是24千克的()/(),求24千克的1/3,列式为:——

  同学们学得真不错,今天,潘老师就要带着大家用这些我们已经掌握的知识去学习新知识,解决新问题。

  二、新授

  (一)教学例1

  1、教学第一种算法

  例1:量杯里有4/5升果汁,平均分给2个小朋友喝,每人可以喝多少升?

  读题

  提问:怎样列式?(4/52)

  怎样计算呢?

  (1)4/5表示什么意思?(是把1升平均分成5份,取其中的4份),(边说边出示图)

  从图中你能看出每份是多少米?(板书:2/5升)

  那么2/5升是怎样算出的呢?

  4个1/5平均分成2份,可以用4/5的分子除以2,而分母不变,就得到结果是2/5。(板书算式)

  (2)补充例证

  如果现在把4/5升果汁,平均分给4个小朋友喝,每人可以喝多少升?

  怎样列式?(板书)。现在是把几个1/5平均分4份,每份是多少?这里的1是怎样得来的?分母怎样?

  (3)观察比较

  提问:(1)这两道除法算式都是什么数除以什么数?(分数除以整数板书课题)

  (4)通过刚才这两道题的计算,你们有没有发现,分数除以整数可以怎样计算?(边说边指示)。

  2、教学第二种算法

  (1)还有别的计算方法吗?(把4/5平均分成2份,求每份是多少?也就是求4/5的1/2是多少?可以用乘法来计算。)(板书)

  (2)问:从这个算式可以看出,一个分数除以整数还可以怎样计算

  通过这两种交流,使学生知道分数除以整数的方法是多样的,又能初步理解分数除以整数可以转化为分数乘以这个整数的倒数的思路。

  (3)让学生做试一试的题(自主选择计算方法)

  计算好了以后,再请学生说说你的思路是怎么样的

  使学生进一步明确,分数除以整数,可以转化为分数乘这个数的倒数。

  (4)你能用简炼的语言概括一下这种方法吗?

  教师板书:分数除以整数,等于分数除以整数的倒数

  (5)你认为这个计算方法有什么重要的地方需要提醒大家。

  教师用红笔标注。

  三、巩固练习

  老师也为同学们准备了一套星级赛题,你们有信心挑战吗?

  一星题:

  1、课本56页的练一练第1题

  做此题的目的使学生明确当遇到分子能整除时比较简便。

  可以选用这样的方法。

  二星题:

  2、这里还有6道题,哪些同学愿意到前面来解答的?

  练一练第2、3题

  让学生能根据题目灵活选择计算方法

  做好以后进行集体讲解和订正

  三星题:

  3、老师这里还有一组辨析题,请你们看看这几道题正确吗?错在哪里?你能帮助改正过来吗?

  8/94=8/91/4=2/92/73=2/73=6/7

  8/94=8/91/4=2/93/73=3/71/3=1/7

  师:因此,我们同学在计算时,首先要看清题目,选择正确的计算方法,计算要细心。

  四星题:

  4、练习十一第2题

  本题的题目关键要让学生进行比较,分数乘法和除法的区别。

  五星题:

  1、如果a是一个不等于0的自然数,13a等于多少

  问:你能用具体的数来检验这个结果吗?

  2、()/()3=5/187/()=()/24

  四、小结

  本课我们学习了什么内容?

分数除法教案 篇12

  教学准备

  教学时数2课时

  教学过程

  一,你学到了什么?与同学进行交流。

  1,第一单元的内容。

  学生先小组交流,然后师生共同讨论知识的过程。

  分数乘法的意义,分数乘法的计算方法,解决简单的'分数乘法应用题。

  2,第二单元的内容。

  长方体,正方体的特点,长方体,正方体的展开图,长方体,正方体的表面积的计算方法。

  3,第三单元的内容。

  除法的意义,除法的计算方法,倒数的含义,用方程解决问题,算术方法解决除法问题。

  二,决问题

  1.第1题,学生独立完成,教师集体对答案,表扬做全对的同学。

  2.第2题,学生独立完成,让学生说说是怎样想的?

  3.第3题,学生先独立完成,要向学生讲清怎样才知道10包纸巾的长、宽、高。师生共同讨论。

  4.第4题,引导学生从不同的角度思考解决问题的方法,也可引导学生通过画图来理解题意。

  5.第5题,首先鼓励学生看懂图意,然后分析图中的数量关系,列出方程解决问题:2/9ⅹ=140。

  6.第6题。鼓励学生理解题意,然后分析题目中的数量关系,在此基础上独立解决问题。

  7,第7题。学生独立完成,教师集体讲评。

  8.第8题。小组交流,然后师生共同完成。

  9.第9题。以统计表的形式出现复习分数乘法,但是很容易解决。先让学生独立解决,然后说一说题意的策略。

  三.

  通过这两单元的与复习,你学到了什么?

分数除法教案 篇13

  设计说明

  《数学课程标准》指出:学生是学习的主体,教师是组织者、引导者、合作者。因此,本节课以自主探究、小组合作的学习方式为主,采用情境教学法。先通过分月饼来导入新知,再通过实例验证,自己总结归纳出整数除以分数的计算方法,从而使学生从形象思维逐步过渡到抽象思维,进而达到感知新知、验证新知、应用新知、巩固和深化新知的目的。本节课的教学设计有如下特点:

  1.注重对算理的探究。

  探究算理是计算教学的根本。本节课的教学设计借助除法的意义和直观图形,让学生通过观察、比较与思考,发现整数除以整数(0除外)与整数除以分数知识间的内在联系,初步体会“除以一个不为零的数”与“乘这个数的倒数”之间的联系。这样不仅为学生创设了一个理解分数除法意义的机会,还教会了学生一种学习的方法,即分数除法的意义可以联系整数除法的意义进行学习。

  2.突出自主探究的过程。

  《数学课程标准》指出:自主探究、合作交流是数学学习的重要方式。本节课充分发挥学生的主体作用,先让学生独立思考,探究计算方法,再在独立探究的基础上,让学生小组合作讨论,探究不同的计算方法。这样不仅可以使学生经历独立探究、小组探究的过程,还可以使学生对“整数除以分数”的算理和算法的理解更深刻。

  课前准备

  教师准备 PPT课件

  学生准备 圆形纸片

  教学过程

  第1课时 分数除法(二)(1)

  ⊙创设情境,导入新课

  有4张饼,平均每人得到了2张;还是同样的4张饼,平均每人得到了1张。你能猜出两次分别是几个人分的饼吗?你是怎么想的?

  设计意图:以猜一猜的形式导入新课,生动地呈现例题,激发了学生学习的兴趣。

  ⊙合作交流,探究新知

  1.初步探究计算方法。

  (1)课件出示教材57页上面例题。

  (2)组织学生独立完成前两个小题,明确数量关系。

  学生独立完成后汇报:

  每2张一份,可分成几份?4÷2=2(份)

  每1张一份,可分成几份?4÷1=4(份)

  (3)组织学生讨论后,明确一个数除以分数的计算方法。

  ①引导学生动手操作,用圆形纸片代替饼,画一画,分一分,完成填空,并汇报自己的分法。

  生1:我把每个圆都平均分成2份,一共可分成8份,可以用算式4÷=4×2=8(份)来表示。

  生2:我把每个圆都平均分成3份,一共可分成12份,可以用算式4÷=4×3=12(份)来表示。

  ②观察算式,明确计算方法。

  组织学生观察下面两个算式,交流自己的发现。

  4÷=4×2=8 4÷=4×3=12

  小结:一个数除以一个不为零的数,等于乘这个数的倒数。

  设计意图:让学生充分利用学具,独立完成整数除法的计算,明确题中的数量关系;借助画一画、分一分的方法完成除法到乘法的转化。通过自主观察、小组讨论交流,真正理解一个数除以一个不为零的数,等于乘这个数的倒数的计算方法。

  2.进一步巩固计算方法。

  (1)出示教材57页中间例题的表格。

  (2)引导学生观察表格前两行,讨论、交流表格中各项的意义和计算方法。

  (3)组织学生填写表格。

  (4)讨论:从表格“算式”一栏,你发现了什么?

  (一个数除以一个不为零的数,等于乘这个数的倒数)

  3.算一算,巩固计算方法。

  (1)组织学生独立完成教材57页下面例题。

  (2)汇报交流,说明计算时需要注意的事项。(能约分的要约分)

  ⊙巩固练习,提升反馈

  完成教材58页3题,集体订正。

  ⊙课堂总结

  通过本节课的学习,你有哪些收获?

  ⊙布置作业

  教材58页1、2题。

  板书设计

  分数除法(二)(1)

  4÷=8 4÷=12

分数除法教案 篇14

  设计说明

  苏霍姆林斯基曾说过:“引导学生借助已有的经验去获取知识,这是最高的教学技巧之所在。”本节课的教学通过让学生动手操作、自主探究、合作交流等方式,使学生经历“探究——发现——验证——修改”的过程。通过一系列的活动,使学生完成了知识的自我构建,同时也加深了对分数除以整数的意义的理解,符合学生的发展需要。

  另外,本节课的教学设计还遵循学生的认知规律和年龄特点,对计算进行探究式教学。让学生以自主探究和合作交流的方式,在分析问题和解决问题的过程中体验成功的喜悦,不仅使学生获得了知识,发展了智力,还激发了学生学习数学的兴趣

  课前准备

  教师准备 PPT课件、长方形包装纸

  学生准备 长方形纸

  教学过程

  ⊙创设情境,提出问题

  1.问题导入。

  师:同学们,我们学过整数除以整数(0除外),也知道了整数除法的意义。今天我们将学习分数除法。那么分数除法的意义是什么呢?它和整数除法的意义是否相同呢?下面就让我们带着疑问一起来探究一下几个小朋友分饼的问题。

  请你们列出算式并计算。

  (1)每人吃张饼,4个人共吃多少张饼?

  (2)把2张饼平均分给4个人,每人分得多少张饼?

  (3)有2张饼,每人分得张饼,可以分给几个人?

  (引导学生观察上面的三道题,并说一说它们都是已知什么,求什么)

  2.揭示分数除法的意义。

  讨论:(3)题中涉及了分数除法,想一想,分数除法的意义和整数除法的意义相同吗?

  总结:分数除法的意义与整数除法的`意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。

  设计意图:通过对一组题的探究和对比,使学生发现分数除法的意义与整数除法的意义相同,这样新旧知识的迁移过渡,可以使学生对分数除法的意义理解起来更加容易。

  ⊙合作交流,探究新知

  1.引导参与,探究新知。

  (1)出示教材55页例题。

  师:(出示一张长方形的包装纸)老师想用这张漂亮的包装纸把送给妈妈的礼物包装起来,可是这张纸太大了,把它的平均分成2份就够了,每份是这张纸的几分之几呢?

  (2)动手操作,分一分,涂一涂。

  师:请大家拿出一张长方形纸,涂色表示出这张纸的。

  (学生动手操作,教师巡视指导)

  师:把一张长方形纸的平均分成2份,想一想,是把哪一部分平均分成了2份?其中的一份是多少呢?请大家用自己喜欢的颜色表示出来。

  (学生活动,教师指导)

  (3)观察发现。

  师:通过画图,你发现了什么?能用一个算式表示出涂色的过程吗?

  预设

  (教师利用课件配合学生汇报)

  生1:把平均分成2份,每份是2个小格,占这张纸的。

  生2:里面有4个,平均分成2份,每份就是2个,是,即÷2=。

  设计意图:通过涂一涂的活动,在教师的引导下,让学生列出除法算式,使学生进一步理解、感受分数除法的意义。

  2.初探算法。

  师:如果不看图,你会计算÷2吗?你能提出大胆的猜想吗?

  预设

  生:分母不变,被除数的分子除以整数得到的商作商的分子。

  提出质疑,验证猜想,理解新知。

  (1)尝试验证,发现问题。

  师:科学的验证不是仅通过计算一两道题就能得出结论的,你们能不能自己设计一道分数除以整数(0除外)的计算题来验证刚才的猜想是否正确呢?

  (学生汇报验证的结果)

  师:为什么有些题目能很顺利地算出来,而有些题目却不能很快地算出准确的答案呢?(分数的分子不能被除数整除)

分数除法教案 篇15

  单元教材分析:

  本单元是在学生已经掌握了分数乘法的基础上,学习分数除法和比的初步知识。主要内容包括分数除法的意义和计算;解决问题;比的意义与基本性质,求比值一化简比,以及比的应用。通过本单元的学习,学生可以比较系统大掌握了分数的四则运算;另一方面又开始了比的初步知识的系统学习,为后面学习百分数和比例提供了基础。

  单元教学目标:

  1、理解并掌握分数除法的计算方法,回进行分数除法计算。

  2、回解答已知一个数的几分之几是多少求这个数的实际问题。

  3、理解不的意义,知道比与分数、除法的关系,并能类推出比的基本性质。能够正确地化简比和求比值

  4、能运用比的知识解决有关的实际问题。

  学情分析:

  本单元学习之前,学生基本上完成了分数加、减以及分数乘法的学习。学生可以根据整数除法的意义理解分数除法的意义。

  教学目标:

  1、让学生理解分数除法的运算意义。

  2、掌握分数除以整数的计算方法。

  3、培养学生的计算能力和分析能力。

  教学过程:

  备注

  活动一:

  出示例1

  每盒水果糖重100克,3盒有多重?

  1、读题理解题意

  2、列式100x3=300

  3、把乘法算式改成两道除法算式

  300/3=100300/100=3

  4、用千克做单位怎样列式?

  1/10x3=3/10

  5、|用同样的方法改写成除法算

  小结:分数除法的意义

  活动二:

  出示例2

  把一张纸的4/5平均分成2份,每份是这张纸的几分之几?自己试着折一折,算一算

  1、把4/5平均分成2份,就是把4个1/5平均分成2份,每份就是2个1/5,就是2/5

  2、把4/5平均分成3份,每份就是4/5的1/2,也就是4/5x1/2

  3、根据上面的折纸实验和算式,你发现什么规律?

  小结:(略)

  活动三:

  巩固练习:

  1、31页做一做1、2

  板书设计

  略去设计

分数除法教案 篇16

  教学目的

  使学生会计算带分数除法和已知一个数的几分之几倍是多少求这个数的文字题。

  教学过程

  一、复习

  1.口算下列各题。

  2.把下列假分数改写成带分数。

  3.把下列带分数改写成假分数。

  让学生独立完成。巡视时注意学生发生错误的情况,加强个别辅导。做完后集体订正。

  二、新课

  1.教学例5。

  教师出示例5:

  教师:我们学过的分数乘法中有带分数的应该怎么办?(先把带分数化成假分数,然后再乘。)

  教师:那么在分数除法中有带分数的,应该怎样计算?(也要先把带分数化成假分数,再进行计算。)

  教师让学生把例5中的带分数化成假分数,再独立计算,巡视时。注意学生将除法转化成乘法的同时是否将除数改写成它本身的倒数,约分是否有错等。做完后集体订正。

  2.做教科书第39页中间做一做的题目。

  让学生独立完成。做完后集体订正。

  3.教学例6。

  (1)准备题。

  ①的3倍是多少?

  ②的是多少?

  ③的是多少?

  教师:这三道题按照题意应该用什么方法计算?(按照分数乘法的意义,用乘法计算。)

  教师让学生计算后集体订正。

  (2)教学6。

  教师出示例6:

  教师指名说题目的条件和问题。

  教师:如果例6中的一个数已知的,那么求一个数的几倍应该怎样计算?(应该用乘法计算。)

  教师:从上节课学习过的内容来看,例6怎样解答比较方便?(用方程解答比较方便。)

  教师:应该设什么数为未知数x?(设这个数为未知数x。)

  让学生列方程解答。巡视时,注意学生设未知数、书写是否规范,发现问题及时纠正,做完后集体订正。

  4.做教科书39页下面做一做题目。

  让学生独立完成。巡视时,注意学生设未知数和书写规范方面的问题。做完后集体订正。

  三、巩固练习

  1.做练习十第1题第1行的小题。

  让学生装独立完成。做完后集体订正。

  2.做练习十第2题的前2个小题。

  让学生装独立完成,做完后集体订正。

  3.做练习十第3题的第(1)~(3)题。

  第(1)题:教师先让学生读题,弄清题目的条件和问题以及它们之间的关系,然后再列方程解答。做完后集体订正。

  第(2)、(3)题:让学生装独立完成。订正时,让学生装说一说是根据什么列方程式的?(根据乘法的意义。)

  4.做练习十的第5题。

  教师先让学生读题和分析数量关系,再列方程解答。做完后集体订正。

  四、作业

  练习十第1题第2行的小题,第2题的最后一个小题,第3题的第(4)题,第4题。

分数除法教案 篇17

  教学目标

  1.使学生理解分数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中一个因数,求另一个因数的运算.

  2.掌握分数除以整数的计算法则,并能正确的进行计算.

  3.培养学生分析能力、知识的迁移能力和语言表达能力.

  教学重点

  正确归纳出分数除以整数的计算法则,并能正确的进行计算.

  教学难点

  正确归纳出分数除以整数的计算法则,并能正确的进行计算.

  教学过程

  一、复习引新

  (一)说出下面各数的倒数.

  0。3 6

  (二)已知126×45=5670,直接说出5670÷45和5670÷126的得数,再说说你是怎样想的,根据是什么.(学生回答后教师总结:根据整数除法的意义,不用计算就能知道这两题的结果,谁还记得整数除法的意义是什么?已知两个因数的积与其中一个因数,求另一个因数的`运算.)

  (三)引新:同学们想不想知道分数除法的意义吗?分数除法如何计算呢?这节课我们就一起来学习分数除法.(板书课题:)

  二、新授教学

  (一).教学分数除法的意义(演示课件:分数除法的意义)

  1.每人吃半块月饼,4个人一共吃多少块月饼?

  教师提问:半块月饼用分数怎么表示?求4个人一共吃多少块月饼就是求几个 ?求4个 是多少怎样列算式?( )

  2.两块月饼,平均分给4人,每人分得多少块?怎样列式?

  列式:2÷4

  3.两块月饼,分给每人半块,可以分给几个人?

  列式:

  教师提问:说一说结果是多少?你是如何得出结果的?

  4.组织学生讨论:分数除法的意义.

  总结:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算.

  5.练习反馈.

  根据: ,写出 ,

  (二)教学分数除以整数的计算法则

  1.出示例1.把 米铁丝平均分成2段,每段长多少米(演示课件:分数除以整数)

  (1)求每段长多少米怎样列算式?

  (2)以小组为单位讨论一下得多少呢?

  米平均分成2段就是要把6个 米平均分成2份,每份是3个 米是 米.

  (3)教师板书整理.

  (米)

  2.教师质疑:如果把 米铁丝平均分成3段、6段怎样计算?

  也可以这样想:把 米铁丝平均分成3段,就是求 米的 是多少,列式是:

  把 米铁丝平均分成6段,就是求 米的 是多少,列式是:

  3.教师继续质疑:如果把 米铁丝平均分成4段每段长多少米?怎样计算?

  (米)

  为什么采用转化成分数乘法这种方法比较好呢?

  组织学生观察 在转变中,什么变了,什么没变?讨论分数除以整数的计算法则.

  4.学生边概括教师边板书:分数除以整数(0除外)等于分数乘以这个整数的倒数.

  三、巩固练习

  (一)计算下面各题.

  学生独立完成,教师巡视,进行个别辅导.

  (二)求未知数

  1. 2.

  (三)判断.

  1.分数除法的意义与整数除法的意义相同.( )

  2.已知两个分数的积与其中一个分数,求另一个分数,用除法解答.( )

  3. ( )

  4. ( )

  5. ( )

  (四)解答下面各题.

  1.把 平均分成4份,每份是多少?

  2.什么数乘以6等于 ?

  3.一个正方形的周长是 米,它的边长是多少米?

  四、课堂总结

  这节课我们学习了哪些知识?分数除法的意义是什么?分数除以整数的计算法则是什么?还有什么问题?

  五、课后作业

  (一)计算下面各题.

  (二)解下列方程.

  六、板书设计

  分数除法

分数除法教案 篇18

  教学目的

  1理解分数除法的意义,掌握分数除法的计算方法。

  2进一步培养学生抽象概括的能力和计算能力。3进一步渗透转化的数学思想。教学重点理解分数除法的意义,掌握分数除以整数的计算方法。教学难点培养数学能力,渗透转化思想。课型讲练课教法讨论、讲解教具投影

  板书设计1分数除以整数例1:把一根长4/5米的'铁丝,截成相等的两段,每段长几米?解:4/52 = 0.82 = 0.4(米)4/52 = 42/5 = 0.4(米) 4/52 = 4/51/2 = 0.4(米) 课后小结内容设计合理,结构紧凑,一步一步让学生体会分数除以整数,可以有多种方法解答,只有把除以整数改写成乘整数的倒数,这样才是最简便的,学会了把新知改变成旧知来解决问题的这种学习方法,拓展了思路,活跃了思维。 教学过程意图媒体教师活动学生活动

  一、复习导入新课为迁移做准备

  明确分数除法意义投影 板书 投影 小结 板书1列式计算:一袋洗衣粉重1/2千克,4袋洗衣粉重多少千克?1/24 或41/22改编并列式:把上题改编成两道除法应用题① 4袋洗衣粉重2千克, 一袋洗衣粉重多少千克?2 4 = 1/2(千克)②一袋洗衣粉重1/2千克, 几袋洗衣粉重2千克?21/2 = 4(千克)3讨论:结合以上三题,请同学们思考分数除法的意义。通过以上数学活动,同学们已经明确了分数除法与整数除法的意义相同,是已知两个因数的与其中的一个因数,求另一个因数的运算。那么分数除法又怎样计算呢?今天我们就来研究这个问题。课题:分数除法指名口答 求4个1/2是多少。 生编题,师板书。 根据上题数量关系说出结果

  二、新课学习分数除法的计算方法

  学习分数除法的计算方法板书 激发兴趣 汇报 板书

  板书 1出示例1:把一根长4/5米的铁丝,截成相等的两段,每段长几米?理解4/5米的意义 ?米 ?米

  4/5米通过以上活动,我们进一步理解了题意,你能否根据题意把它转化成已学过的知识进行计算?解:①4/52 = 0.82 = 0.4(米)②4/52 = 42/5 = 0.4(米) ③4/52 = 4/51/2 = 0.4(米)重点说明③把4/5米平均分成2份,求每份是多少,就是求4/5米的1/2是多少米?列式是4/51/2。2尝试计算方法:三选一计算3/85 1/32 5/93①3/85 = 3/81/5 = 3/403/85 = 35/8 = 0.6/8 = 3/403/85 = 0.3755 = 0.075②1/32 = 1/31/2 = 1/6 1/32 = 12/3 = 0.5/3 = 1/6③5/93 = 5/91/5 = 5/27哪种方法最好,为什么?3用这种最简便方法计算:7/1314

  5/9104归纳计算法则:①口述做上述两题的方法②除以10 改写成乘1/10。③1/10是10 的倒数。分数除以整数(0除外),等于分数乘这个整数的倒数。审题列式 理解意义

  讨论方法

  选择自己喜欢的方法计算其中一题 讨论③最适用 小组讨论 为什么要0除外

  三、练习巩固分数除法的计算法则投影

  投影 1计算:14/157 4/53 4/1182填空:2/35 = 2/3( )3/79 = 3/7( )5/610 = 5/6( )19/208 = 19/20( )3/116 = 3/11○1/65/66 = 5/6○( )12/173 = ( )○( )3课后讨论:2/73你会做,32/7你行吗?认真计算

分数除法教案 篇19

  教学目标:

  1、通过教学,使学生在理解分数除法意义及掌握分数乘法应用题解题思路的基础上,掌握已知一个数的几分之几是多少求这个数的稍复杂分数除法应用题的解题思路和方法,能比较熟练地解答一些简单的实际问题。

  2、通过教学,培养并提高学生的分析、判断、探索能力及初步的逻辑思维能力。

  教学重点:

  弄清单位1的量,会分析题中的数量关系。

  教学难点:

  分析题中的数量关系。

  教学过程:

  一、复习

  小红家买来一袋大米,重40千克,吃了,还剩多少千克?

  1、指定一学生口述题目的条件和问题,其他学生画出线段图。

  2、学生独立解答。

  3、集体订正。提问学生说一说两种方法解题的过程。

  4、小结:解答分数应用题的关键是找准单位1,如果单位1的具体数量是已知的,要求单位1的几分之几是多少,就可以根据分数乘法的意义,直接用乘法计算。

  二、新授

  1、教学补充例题:小红家买来一袋大米,吃了,还剩15千克。买来大米多少千克?

  (1)吃了是什么意思?应该把哪个数量看作单位1?

  (2)引导学生理解题意,画出线段图。

  (3)引导学生根据线段图,分析数量关系式:买来大米的重量-吃了的重量=剩下的重量

  (4)指名列出方程。解:设买来大米X千克。

  x-x=15

  2、教学例2

  (1)出示例题,理解题意。

  (2)比航模组多是什么意思?引导学生说出:是把航模组的人数看作单位1,美术组少的人数占航模组的

  (2)学生试画出线段图。

  (3)根据线段图,结合题中的分率句,列出数量关系式:

  航模小组人数+美术小组比航模小组多的人数=美术小组人数

  (4)根据等量关系式解答问题。解:设航模小组有人。

  +=25

  (1+)=25

  =25

  =20

  三、小结

  1、今天我们学习的这两道应用题,它们有什么共同点?(今天我们学习的这两道应用题,题里的单位1都是未知的数量,都可以列方程来解,这样顺着题意列出方程思考起来比较方便。)

  2、用方程解答稍复杂的分数应用题的关键是什么?(关键是找准单位1,再按照题意找出数量间的相等关系列出方程)

  四、练习

  练习十第4、12、14题。

分数除法教案 篇20

  练习目标:

  1在理解分数除法算理的基础上,正确熟练地进行分数除法的计算;

  2运用所学的分数除法的知识,解决相应的实际问题.

  练习过程:

  一、基础知识练习:

  1、计算:

  ⑴2/1328/943/1035/11522/232

  ⑵3/10223/242617/21518/9713/154

  (学生独立计算,教师巡视指导,订正时让学生说一说是怎样计算的.)

  2、通过计算下面的题,请你想一想,除数是整数和除数是分数的除法在计算上有什么相同的地方?

  引导学生小结:除以一个不等于0的数,等于h这个数的倒数.

  二深入练习

  1、计算下面各题,比较它们的计算方法.

  5/6+2/35/6-2/35/62/35/62/3

  2、

  (让学生计算后分组讨论:你发现了什么规律?请你把你发现的规律完整地讲给大家听听。)

  根据学生的`回答,教师作如下板书:

  一个数除以小于1的数,商大于被除数;

  一个数除以1,商等于被除数;

  一个数除以大于1的数,商小于被除数。

  三、解决问题:

  练习八第7至8题。

  第7题学生独立解答。

  第8题学生解答时提示学生需要先统一单位。

  小结三道题的共同特点:都是求一个量里包含多少个另一个量,都用除法计算。

  四、作业练习:

  1、33页第5、9题。

  2、一个商店用塑料袋包装120千克水果糖.如果每袋装1/4千克,这些水果糖可以装多少袋?

  五、教学反思:

分数除法教案 篇21

  教学内容:

  苏教版义务教育教科书《数学》六年级上册第49~50页例5、试一试和练一练,第51页练习七第1~4题。

  教学目标:

  使学生联系对“求一个数的几分之几是多少”的已有认识,学会列方程解答“已知一个数的几分之几是多少求这个

  数”的简单实际问题,进一步体会分数乘、除法的内在联系,加深对分数表示的数量关系的理解。

  教学重点:

  列方程解答“已知一个数的.几分之几是多少,求这个数”的简单实际问题。

  教学难点:

  理解列方程解决简单分数实际问题的思路。

  教学过程:

  一、导入

  1、出示例5中两瓶果汁图,估计一下,大、小两瓶果汁之间有什么关系?

  出示:小瓶的果汁是大瓶的。

  这句话表示什么?你能说出等量关系式吗?

  如果大瓶里的果汁是900毫升,怎么求小瓶果汁里的果汁?自己算算看。

  如果知道小瓶里的果汁,怎么求大瓶中的果汁呢?

  2、揭示课题:简单的分数除法应用题

  二、教学例5

  1、出示例5,学生读题。

  提问:你想怎么解决这个问题?

  2、讨论交流:你是怎么想、怎么算的?

  (1)用除法计算。

  引导讨论:为什么可以用除法计算?依据是什么?

  (2)用方程解答。

  讨论:用方程解答是怎么想的,依据是什么?

  让学生在教材中完成解方程的过程,并指名板演。

  3、引导检验:900是不是原方程的解呢,怎么检验?

  交流检验的方法。

  4、教学“试一试”

  (1)出示题目,让学生读题理解题目意思。

  (2)讨论:这里中的两个分数分别表示什么意思?

  这题中的数量关系式是什么?

  (3)这题可以怎么解答,自己独立完成,并指名板演。

  (4)交流:你是怎么解决这个问题的?

  4、小结。

  三、练习

  1、做“练一练”。

  各自独立解答后,进行交流汇报。提倡学生用两种方法进行解答。

  2、做练习十二第1题。

  (1)读题,画出题目中的关键句。

  (2)学生说题意

  (3)引导学生说出并在书上写出数量关系式。

  (4)独立解答,并指名板演。

  (5)集体评议并校正。

  3、做练一练第2题。

  启发:你是怎样分析数量关系的?为什么要列方程解答?

  3、小结解题策略。

  四、作业:练习十二第1、3、4题。

  板书设计:(略)

分数除法教案 篇22

  一、复习引新

  1.说出下面各数的倒数。

  0.36

  2.已知12645=5670,直接说出567045和5670126的得数,再说说你是怎样想的,根据是什么。(学生回答后教师总结:根据整数除法的意义,不用计算就能知道这两题的结果,谁还记得整数除法的意义是什么?已知两个因数的积与其中一个因数,求另一个因数的运算。)

  3.引新:同学们想不想知道分数除法的`意义吗?分数除法如何计算呢?这节课我们就一起来学习分数除法。(出示课题)

  二、新授教学

  (一).教学分数除法的意义(课件一下载)

  ①每人吃半块月饼,4个人一共吃多少块月饼?

  半块月饼用分数怎么表示?求4个人一共吃多少块月饼就是求几个?求4个是多少怎样列算式?()

  ②两块月饼,平均分给4人,每人分得多少块?怎样列式?

  列式:24

  ③两块月饼,分给每人半块,可以分给几个人?

  列式后,说一说结果是多少?你是如何得出结果的?

  ④组织学生讨论:分数除法的意义。

  总结:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。

  ⑤练习反馈。

  根据:,写出,(二).教学分数除以整数

  1.出示例1、把米铁丝平均分成2段,每段长多少米(课件二下载)

  ①求每段长多少米怎样列算式?②以小组为单位讨论一下得多少呢?

  米平均分成2段就是要把6个米平均分成2份,每份是3个米是米。

  ③、教师板书整理。

  (米)

  2.教师质疑:如果把米铁丝平均分成3段、6段怎样计算?

  也可以这样想:把米铁丝平均分成3段,就是求米的是多少,列式是:把米铁丝平均分成6段,就是求米的是多少,列式是:3.教师继续质疑:如果把米铁丝平均分成4段每段长多少米?怎样计算?(米)

  为什么采用转化成分数乘法这种方法比较好呢?

  组织学生观察在转变中,什么变了,什么没变?讨论分数除以整数的计算法则。

  4.学生边概括教师边板书:分数除以整数(0除外)等于分数乘以这个整数的倒数。

  三、巩固练习

  1.计算下面各题:

  学生独立完成,教师巡视,进行个别辅导。

  2.请同学求未知数①②3.判断。

  ①分数除法的意义与整数除法的意义相同。()

  ②已知两个分数的积与其中一个分数,求另一个分数,用除法解答。()

  ③()

  ④()

  ⑤()

  4.解答下面各题。

  ①把平均分成4份,每份是多少?

  ②什么数乘以6等于?

  ③一个正方形的周长是米,它的边长是多少米?

  四、课堂总结

  这节课我们学习了哪些知识?分数除法的意义是什么?分数除以整数的计算法则是什么?还有什么问题?

  五、课后作业

  练习七1、2、3、4

  六、板书设计

分数除法教案 篇23

  一、复习

  1、同学们,你能口算95930÷362等于多少吗?为什么?(学生回答数据太大,不好口算)

  如果已知265×362=95930,你能说出答案吗?为什么?

  (引导学生说出整数除法的意义:已知两个因数的积和其中一个因数,求另一个因数的运算)

  二、教学分数除法的意义

  1、2/7 ×( )=1,括号内填几分之几?为什么?

  2、根据这道乘法算式,你能说两道除法算式吗?根据是什么?

  (引导说出分数除法的意义)

  3、完成p25做一做

  三、分数除以整数的计算法则

  1、这节课我们学习分数除法

  2、同学们已经了解分数除法的意义,你还想学习关于分数除法的什么知识?

  3、事实上,有一些分数除法同学们是会计算的。下面口算几题:

  3/8÷3/8 0÷4/9 1÷2/5 3/4÷1

  你是根据什么知识口算这几道题的?

  4、上面这四道题是一些特殊的分数除法,我们继续学习其他的分数除法。

  出示例题:一张纸的 平均分成3份,每份是这张纸的几分之几?(图略)

  怎样列式? 你能根据图说出算式的结果吗?怎样证明这个结果是正确的呢?(引导学生从多个角度证明结果的正确性 )

  根据学生的回答板书:

  3/4÷3 = 3÷34 = 1/4

  你能归纳这种分数除以整数的计算方法吗?

  5、用这种方法口算:

  3/4÷3 4/9÷4 10/9÷5 6/7÷2

  6、质疑

  你认为这种计算方法适用于所有的分数除以整数吗?能举例说明吗?

  7、小组讨论,自主学习分数除以整数

  用学生所举的例子作为教学例题(例如 1/5÷3),在数学学习过程中,我们经常遇到新问题,这时需要考虑如何将新问题转化为已学过的旧知。现在看一看,我们已经掌握了哪些分数除法的知识:

  (1)分数除以整数,用分子除以整数的商作分子,分母不变。

  (2) 1除以一个分数,结果是该分数的倒数。

  (3)一个分数除以1,结果是原分数。

  你能将1/5 ÷3转化成已经掌握的分数除法吗?小组讨论并将讨论结果记录下来。

  8、小组汇报

  (1)1/5 ÷3=3/15 ÷3=1/15

  (2)1/5 ÷3=(1/5 ×5)÷(3×5)=1÷15=

  (3)1/5 ÷3=(1/5 ×1/3 )÷(3×1/3 )= 1/5×1/3 ÷1=1/15

  (4) ……

  你能归纳自己小组讨论的分数除以整数的计算方法吗?

  (1)先将分子和分母同时扩大相同的倍数,使除数能整除分子,再用前面的方法计算。

  (2)利用商不变性质,将分数除以整数转化成1除以一个数,再计算。

  (3)利用商不变性质,将分数除以整数转化成一个分数除以1,再计算。

  (4)……

  9、观察第三种方法:

  1/5 ÷3=(1/5 ×1/3 )÷(3×1/3 )= 1/5×1/3 ÷1=1/15

  这个计算过程还可以更简洁些,你能看出来吗?

  化简得: 1/5 ÷3=( 1/5×1/3 )÷(3×1/3 )= 1/5×1/3 =1/15

  观察 1/5÷3== 1/5×1/3 ,你能说一说吗?

  (引导学生说出分数除以整数,等于分数乘整数的.倒数)

  10、计算方法的优化

  刚才小组讨论时,每组用一种方法计算了 1/5÷3,现在你能用其他的方法计算一下吗?

  学生计算后提问:你喜欢那种方法?为什么?

  总结分数除以整数的计算法则:

  分数除以整数(零除外),等于分数乘整数的倒数。

  11、对其他的方法,你又有什么要说的吗?

  (引导说出当分子能被整数整除时,可以直接用分子除以整数的商作分子,分母不变的方法。培养学生从不同角度观察、分析问题)

  四、课堂练习

  1、计算下列各题

  2/3÷3 2/11÷2 3/8÷6 5/4÷2

  2、练习七第1题

  3、讨论题

  1/3÷a和 1/a÷3(a≠0),那道题的结果大?为什么?

分数除法教案 篇24

  分数除法同分数乘法一样,都是小学阶段重要的数学内容,从过去的教学实践来看,这部分知识历来是学生数学学习的难点。原《大纲》的要求是:理解分数除法的意义;掌握分数除法计算法则;会计算分数除法;会口算简单的分数除法;会进行分数四则混合运算(不超过三步);会解答分数应用题(最多不超过两部)。《数学课程标准》关于分数除法的具体标准是:会进行分数除法运算和混合运算(以两步为主,不超过三步)。会解决有关分数的简单实际问题。《数学课程标准》与原《大纲》相比,分数除法计算方面的要求没有大的变化,只是把《大纲》中的混合运算的步数”不超过三步“改为”以两步为主,不超过三步“。变化较大的同分数乘法一样,仍然是淡化分数除法的意义,强调会进行分数除法计算和解决简单实际问题。本单元教材与传统教材相比,从编写思想、内容编排、教学方式等方面都有了较大的变化,主要有以下几个方面的特点:

  一、结合具体情境理解分数除法的意义强化计算方法的掌握和应用。

  从传统分数除法教材来看,主要有三个重点。第一,分数除法的意义;第二,分数除法法则。即:一个数除以分数,等于这个数乘以分数的倒数。第三,用方程或算术两种方法解决分数除法问题。从知识的建构上看,学生学习整数除法时对除法就是”平均分“已经非常熟悉,而现实生活中,又很难找到具体的事例来说明”一个数除以分数“的实际意义。所以,传统教材中选用”已知两个因数的积和其中一个因数,求另一个因数的运算“来说明分数除法的意义。这种乘除互逆关系是重要的数学结论,应该在学生乘除计算的知识背景下让学生认识。但是,现在用这个关系来定义分数除法意义的表述,对学生来说实在难于理解,再加上枯燥的看算式说意义的练习,使学生一开始接触分数除法就一头雾水。另外,这个分数除法的意义与”一个数除以分数,等于这个数乘以分数的倒数“这一分数除法的核心知识点又没有一点联系。所以,造成既增加学生的学习难度,又不利于学生掌握知识的情况。本着”降低难度,突出重点“的原则,本套教材首先不安排分数除法意义的内容。而是利用学生已有的整数除法意义的知识,通过现实的,学生能理解的具体事例,学习除法计算。明白为什么用除法?为什么这样算?如,为了解决”一个数除以分数,等于这个数乘分数的倒数“这一分数除法的核心知识点。教材首先安排了三组整数除法和分数乘法相对应口算练习,通过观察计算结果和算式的特点,让学生发现”甲数÷乙数=甲数×乙数的倒数“的规律。然后,选择学生生活中的现实问题,妈妈买来1/2张饼,把它平均分成3份,每份是整张大饼的几分之几?解决这个问题,学生自己的知识和经验是把半张饼平均分成3份,列式是÷3。甲数÷乙数=甲数×乙数的倒数以及3的倒数是。在解决问题的过程中,借助直观图,把学生已有的知识和经验整合在一起,生成新的数学知识,分析除以一个数(0除外)等于分数乘这个数的倒数。这样设计分数除法法则的学习,首先删去了学生难于理解的计算方法推导的过程,另外,由整数除法和分数乘法的规律迁移到分数除法,是一个计算方法验证过程,也是计算方法形成和巩固的过程。在这里,删去的是次要的、过高的要求,强化的是学生扎扎实实进行分数除法计算最基本、最有价值的内容。同时,培养了学生自主建构知识的能力。

  二、渗透数学建模思想,强化用方程解答分数除法问题。

  从过去的经验看,分数除法应用问题的特点是”已知部分和所对应的分率,求整体“。实事求是地讲,这样的应用问题都是已发生的事物,是经过人为”加工“、”编造“的应用问题。这样的问题解决虽然在现实生活中应用较少,但在传统教材和教学中,一直是教材内容的重点和教学评价选题的焦点。众所周知,在很长时期内,分数除法问题要求用算术方法和方程两种方法解答,而用算术方法解答无论如何也找不到学生能够理解的、能够说明并理解数量关系的问题情境。所以,人们就用”已知部分和所对应的分率,求整体,用除法“的解题套路来解决问题。这样的学习,不利于学生理解问题中的数量关系,没有思维的条理性训练,有的只是死记硬背和机械的模仿训练。本教材有关分数除法问题的解决只采用列方程解答。这样设计的思考有以下几点:第一,有利于学生应用已有知识解决问题。即:把单位”1“看作χ,根据”求一个数的几分之几是多少,用乘法“找到题中的等量关系。第二,渗透数学建模的思想。方程是现实运算的一个有效的数学模型。结合分数除法问题的解决,通过一些典型事例,让学生经历分析问题(找等量关系)--列出方程表示--解方程等过程。这是《数学课程标准》提倡的数学建模思想的具体体现。

  三、借助线段图分析数量关系,发挥其工具性。

  线段图作为小学阶段数形结合,分析数量关系的工具,历来成为小学数学中的重要内容。传统教材和教学中,人们在关注用线段直观描述数量关系的同时,也把用线段图表示数量关系作为一般要求。即,把画线段表示题中的数量关系作为学习要求,增加了学习的难度。本套教材,只发挥线段图的工具性。即:借助线段图分析数量关系,不把画线段图表示数量关系作为学习要求。通过线段图来分析问题中的数学信息和数量关系,从而找出问题中隐含的等量关系。让学生在自主解决问题中,体会画图分析问题、解决问题的优越性和工具性。

  本单元共安排5课时。主要内容包括:分数除以整数;一个数除以分数;简单的应用问题;混合运算。

  本单元的教育目标是:

  1、会进行简单的分数除法以及分数四则混合运算,能用方程解决有关分数除法的简单实际问题。

  2、能借助线段图分析数量关系,在用方程解简单分数除法应用问题的过程中,能进行有条理的思考,并对结论的合理性作出有说服力的说明。

  3、能够表达解决简单分数除法实际问题的过程,并尝试解释所得的结果。

  4、体验画线段图分析问题的直观性和用方程解决问题时思维的条理性,认识到许多分数除法问题可以用方程的方法来解决。

  ●分数除法,安排4课时。

  第1课时,分数除以整数。教材首先设计了三组有关系的口算题。如:20÷5,20×。通过计算20÷5=4,20×=4,发现它们的结果相同,进而得出:甲数÷乙数=甲数×乙数的倒数。接着,设计了”把张大饼平均分成3份,每份是这张大饼的几分之几?“的问题,探索分数除以整数的计算方法。教材以学生交流的形式呈现了学生计算和验证的过程。一是利用图示和已有的分数知识,推导出÷3==,二是直接利用发现的规律得出:÷3=×=。得到:分数除以一个数等于分数乘这个数的.倒数。然后,在”试一试“,设计了分数除以整数的三道题,让学生应用上面的方法尝试计算。教学时,要给学生充分的口算和讨论规律的时间,然后,启发学生利用以前学过的除法的意义,倒数的知识,分数乘法的知识解决问题,说明结果的正确性。把分数除以整数计算方法的学习过程,变成知识扩展、方法验证的过程。

  第2课时,一个数除以分数。教材贯彻在解决问题中学习计算的设计思路,选择了把消毒液分装在每瓶能装升的小瓶中的典型事例,设计了两个问题。(1)把2升消毒液分装在每瓶能装升的小瓶中,需要几个瓶子?学习整数除以分数的除法;(2)把升消毒液分装在每瓶能装升的小瓶中,需要几个瓶子?学习分数除以分数的计算方法。两个问题都呈现了算术和用方程解的两种方法。这节课的内容,计算方法是上节课的进一步拓展,根据题意列算式和方程是重点。教学中,首先要帮助学生理解题意,明白把2升消毒液倒入每瓶能装升的小瓶中,需要几个瓶子,就是求2升中有几个升。再鼓励学生用自己的方法试着解答。χ=2和χ=,除根据等式的基本性质解方程外,还可以利用倒数的知识,即两边直接乘的倒数来解决。如果学生只用方程两边同时除以的方法解答,教师就提出兔博士的问题”χ=2还可以怎样解?“启发学生用倒数的知识列方程χ×=2×解答。”试一试“中安排了三道除数是分数的式题,要给学生充分的试算和交流的时间,重点说一说自己是怎样想的。教师还可以引导学生讨论一下分数除以整数、分数除以分数有什么共同点,进一步巩固分数除法的计算方法。

  第3课时,简单的已知一个数的几分之几是多少,求这个数的简单问题。教材选择了同学们开联欢会布置会场的事情,呈现了布置会场的情境图和”用的红气球占总数的“、”红气球有28个“等文字信息,以及”一共用了多少个气球?“的问题。通过兔博士的话,提出”把气球的总数看作单位‘1’,画出线段图分析一下的要求“,并呈现了线段图。教学时,要在学生了解数学信息和知道了要解决的问题后,师生共同画线段图来分析数量关系,找到等量关系式,再鼓励学生自己试着解答,并检验计算的结果。交流时,重点让学生说说是怎样想的、怎样解答的,用自己的方法解释计算结果的正确性。”试一试“中,安排了一个数的几分之几是两数和,求这个数的问题,鼓励学生画线段图并解答。

  第4课时,稍复杂的”已知一个数的几分之几是多少,求这个数“的问题。教材首先选择了玩具厂计划生产碰碰车的事例,用图文结合的方式呈现了已经完成计划的,还要生产190辆等信息和”这批碰碰车有多少辆?“的问题。通过兔博士的话,提示画线段图来分析数量关系并呈现了完整的线段图。这是一道需要两步计算的分数除法的实际问题,可找到两组等量关系,列出两个方程解答。(1)计划生产的辆数-已经生产的辆数=还要生产的辆数,方程为:χ-χ=190。(2)计划生产的辆数×还剩下的几分之几(1-)=还要生产的辆数,方程为:χ(1-)=190。教学时,要充分利用线段图指导、帮助学生分析问题中的数学信息和数量关系,找到题中给出的等量关系,再鼓励学生用列方程的方法解答。

  分数混合运算的顺序与整数一样,本节课的混合运算主要是根据分数除法的特点,解决运算过程中的方法问题。教材设计了三道分数混合运算式题,(1)题是除加混合运算,运算中要先算除法,并把除法变成乘除数的倒数。(2)题是乘除混合运算。运算时,把除法转化为乘除数的倒数后,可以有不同的约分方法。第一,直接在三个分数上约分;第二,把三个分数相乘写成分子乘分子,分母乘分母的式子,再约分。(3)是带小括号的除减混合运算。教学中,由于两步混合运算的顺序学生已经非常熟悉,所以,让学生说一说运算顺序,自己计算。在交流学生计算方法和结果的同时,掌握分数两步混合运算方法。

分数除法教案 篇25

  教学目标:

  1.知识与技能:结合具体事例,经历画线段图分析数量关系、找等量关系并用方程解答简单分数除法问题的过程。

  2.过程与方法:能用方程解答"已知一个数的几分之几是多少,求这个数"的实际问题。

  3.情感与态度:认识到许多分数除法问题可以借助方程来解决,能够表达解决问题的过程。

  教学重点:

  学会用方程解答"已知一个数的几分之几是多少,求这个数"的分数除法应用题。

  教学难点:

  学会用方程解答"已知一个数的几分之几是多少,求这个数"的分数除法应用题。

  教学准备:

  小黑板

  教学过程:

  一、复习

  1.口算

  15 x=5 34 x=6 3x=910

  5x=1011 12 x=89 23 x=67

  2.口答下列各题的数量关系式。

  ⑴某数的35 是36。

  ⑵全厂人数的58 是210人。

  ⑶完成了300个,刚好是计划的14 。

  ⑷一个数的3倍是1225 。

  3.解答:小营村全村有耕地75公顷,其中棉田占35 。 小营村的棉田有多少公顷?

  生练习,提问:这道题为什么用乘法计算?把谁看作单位"1"?

  二、探究新知

  师:请看黑板,同学们开联欢会布置会场,用的红气球占总数的49 ,一共用了多少个气球?

  师:指名读题,谁能找出这道题的已知条件和所求问题。

  师:题中"总数的49 "这个条件你是怎样理解的?

  师:边画图边理解

  师:请同学们看图说说题里的已知条件和问题。

  师:观察图示,你发现数量间有怎样的相等关系。

  师:你是根据什么列出等量关系的?(同桌讨论)

  师:在这个等量关系中,哪个量是已知的?哪个量是未知的?

  师:未知的可以设为X,根据等量关系我们可以用列方程的方法来解答,同学们自己能解答吗?(指名板演,其他自练,并提醒学生做完要检验。)

  师:做完的同学把书打开72页,对照例题检查自己做对了吗?谁愿意说说你是怎样检验的?

  师:同学们是用把原方程的解代入原方程看方程左右两边是否相等的方法检验的,其实还可以根据题意进行检验,我们可以计算28是不是占X的 49 ,如果是就说明你的方程不但列对了,而且解对了。如果不是就说明有错误出现,好及时改正。

  师:回顾例题的学习过程,你认为解题关键是什么?

  师:同学们真聪明!自己不但能学懂知识,还能学以致用,解决实际问题。

  师:其实我们今天所学的知识不光能解决有关联欢会的问题,还能解决生活中的许多实际问题,比如说"十、一假期,老师上街买了一套衣服,裤子75元,是上衣价钱的23 ,"应用今天所学的知识,你能求出一件上衣多少钱吗?(能)

  指名板演,其他自练。

  三、巩固练习

  试一试

  四、全课

  师:求单位"1"的几分之几用乘法,已知一个数的几分之几是多少,求这个数用除法。

  五、作业

  教学后记:

  找准单位"1"的量,掌握题中的数量关系是解答分数问题的关键,教学例题时。我先让学生找单位,写出数量关系,让他们根据数量关系列方程,掌握还不错。

分数除法教案 篇26

  教学内容

  一个数除以分数

  教材第31、第32页的内容。

  教学目标

  1.结合具体情境,理解整数除以分数和分数除以分数的算理,掌握一个数除以分数的计算方法。

  2.能够熟练、正确地进行计算。

  3.渗透转化的数学思想。

  重点难点

  重点:理解一个数除以分数的算理,掌握计算方法。

  难点:能够熟练、正确地进行分数除法的计算。

  教具学具

  练习题投影片。

  教学过程

  一导入

  1.口算。

  3.解答应用题。

  投影出示:小明步行2小时走了6千米。他每小时走多少千米?

  学生计算后,说出这道题中的数量关系。

  板书:路程÷时间=速度。

  二教学实施

  揭示课题:我们已经学过了分数除以整数的计算方法,如果除数是分数该怎样计算呢?今天,我们就来研究一个数除以分数的计算方法。

  板书课题:一个数除以分数

  1.出示例2。

  (1)学生读题,明确题意。

  提问:这道题应该怎样解决呢?(算出每人的速度各是多少,再比较大小)

  (2)列式。

  提问:怎样求小明的速度和小红的速度?

  引导学生利用“速度=路程÷时间”这个关系式列式。

  了2千米”。

  提问:1小时行多少千米,在图上怎样表示?

  小时行了多少千米)

  4.归纳方法。

  老师:观察比较例2的两个算式,你发现了什么?你会用自己的方式描述你发现的规律吗?

  学生自由发言。

  板书:甲数除以乙数(0除外),等于甲数乘乙数的倒数。

  5.练习。

  (1)完成教材第32页“做一做”的第1、2、3题。

  (2)完成教材第34页练习七的第1~8题。

  学生独立完成,集体订正。

  三课堂作业新设计

  1.在○里填上运算符号,在( )里填上适当的数。

  四思维训练参考答案

  思维训练

  练习七

  板书设计

  3.分数除以分数

  4.甲数除以乙数(0除外),等于甲数乘乙数的倒数。

  当一个数(0除外)除以小于1的数,商大于被除数;当除以大于1的数,商小于被

  除数;当除数为1时,商等于被除数。另外,0除以任何数都为0。

  备课参考教材与学情分析

  本节课根据已有的数量关系,引出一个数除以分数的计算。在分数除以整数的基础上,例3研究一个数除以分数的计算,这是一个难点。教材以比较小明、小红两位同学“谁走得快些”,引导学生根据“路程÷时间=速度”这个数量关系列出两个除法算式。算式列出后,请同学们估一估结果是多少,是比被除数2大还是小,然后想办法进行验证,这个环节的设计既激发学生的探究欲望,又为发现被除数和商之间的'关系留下悬念。另外,例2的设计体现了一种转化的思想。将“图”与“式”相对照进行解释、分析、说理,使学生在讲述算理的过程中,感受到用“数形结合”的思想解决问题的便捷性、科学性。

  课堂设计说明

  1.借助线段图引导学生一点点进行分析、说理,学生很自然就理解到要乘除数的倒数。因为有线段图辅助,学生理解起来很容易,自然而然地就明白了算理。

  2.渗透思想,明确结构。

  每一个数学知识都不是孤立存在的,计算教学更是如此,每个新内容都是在已学知识的基础上的进一步延伸,都是在已有知识基础上生长出来的。所以每次新课内容都不能把它看作一个孤立的内容。

分数除法教案 篇27

  教学目标:

  1、通过教学,使学生在理解分数除法意义及掌握分数乘法应用题解题思路的基础上,掌握已知一个数的几分之几是多少求这个数的稍复杂分数除法应用题的解题思路和方法,能比较熟练地解答一些简单的实际问题。

  2、通过教学,培养并提高学生的分析、判断、探索能力及初步的逻辑思维能力。

  教学重点:弄清单位1的量,会分析题中的数量关系。

  教学难点:分析题中的数量关系。

  教学过程:

  一、复习

  小红家买来一袋大米,重40千克,吃了,还剩多少千克?

  1、指定一学生口述题目的条件和问题,其他学生画出线段图。

  2、学生独立解答。

  3、集体订正。提问学生说一说两种方法解题的过程。

  4、小结:解答分数应用题的关键是找准单位1,如果单位1的具体数量是已知的,要求单位1的几分之几是多少,就可以根据分数乘法的意义,直接用乘法计算。

  二、新授

  1、教学补充例题:小红家买来一袋大米,吃了,还剩15千克。买来大米多少千克?

  (1)吃了是什么意思?应该把哪个数量看作单位1?

  (2)引导学生理解题意,画出线段图。

  (3)引导学生根据线段图,分析数量关系式:买来大米的重量-吃了的重量=剩下的'重量

  (4)指名列出方程。解:设买来大米x千克。x-x=15

  2、教学例2

  (1)出示例题,理解题意。

  (2)比航模组多是什么意思?引导学生说出:是把航模组的人数看作单位1,美术组少的人数占航模组的

  (2)学生试画出线段图。

  (3)根据线段图,结合题中的分率句,列出数量关系式:

  航模小组人数+美术小组比航模小组多的人数=美术小组人数

  (4)根据等量关系式解答问题。解:设航模小组有人。

  三、小结

  1、今天我们学习的这两道应用题,它们有什么共同点?(今天我们学习的这两道应用题,题里的单位1都是未知的数量,都可以列方程来解,这样顺着题意列出方程思考起来比较方便。)

  2、用方程解答稍复杂的分数应用题的关键是什么?(关键是找准单位1,再按照题意找出数量间的相等关系列出方程)

  四、练习

  练习十第4、12、14题。

  教学追记:

  本堂课,我吸取上节课对线段图不够重视导致学生解题困难的教训,在基本了解题意之后,就和全班学生一起画出相关的线段图,引导学生看懂线段图,在此基础上再列出数量关系式。由于有了上节课的模式,再加上本节课我对线段图比较重视,因而学生在列数量关系式时顺利多了。

分数除法教案 篇28

  【学习目标】

  1、掌握分数四则混合运算的运算顺序,能较熟练地进行计算。

  2、理解整数四则混合运算定律在分数四则运算中同样适用,并能进行简便运算。

  3、通过练习,培养计算能力及初步的逻辑思维能力。

  【学习重难点】

  1、重点是确定运算顺序再进行计算。

  2、难点是明确混合运算的顺序。

  【学习过程】

  一、复习

  1、复习整数混合运算的运算顺序

  (1)在一个没有小括号的算式里,只有乘除法或加减法,应该从左往右依次计算;

  如果既有加减法又有乘除法,应该先算乘除法,后算加减法。

  (2)在一个有小括号的算式里,应该先算小括号里面的,后算小括号外面的。

  (3)在一个既有小括号又有中括号的算式里,应该先算小括号里面的,后算中括号里面

  的,最后算中括号外面的。

  2、整数四则混合运算定律在分数四则运算中同样适用。

  3、说出下面各题的'运算顺序。

  (1) 428+63÷9―17×5 (2) 1.8+1.5÷4―3×0.4

  (3) 3.2÷[(1.6+0.7)×2.5] (4) [7+(5.78—3.12)]×(41.2―39)

  二、探索新知

  1、阅读例4题目,明确已知条件及问题,尝试说说自己的解题思路。

  a、可以从条件出发思考,根据彩带长8m ,每朵花用2m 彩带,可以先3

  算出一共做了多少朵花。

  b、从问题入手想:要求小红还剩几多花,根据题意,应先求小红一共做了几朵花。

  2、列出综合算式,想一想它的运算顺序,再独立计算。

  ______________________________________________________________

  3、独立完成p34 “做一做”第1、2题

  4、明确整数四则混合运算定律在分数四则运算中同样适用,正确复述四则混合运算定律。

  三、知识应用独立完成练习九第1题,组长检查核对,提出质疑。

  四、层级训练:巩固训练:完成练习九第2—6题;拓展提高:练习九第7---10题。

  (1)第2题:要注意6楼楼板到地面的高度实际上只有5层楼的高度。 (2)第7题:“60瓦”与计算无关。 (3)第10题:最后得数与原数相同,原因是231、的倒数与的积正好是1。 342

  五、总结梳理:回顾本节课的学习,说一说你有哪些收获?

  学习心得__________( a.我很棒,成功了; b.我的收获很大,但仍需努力。) 自我展示台:(把你个性化的解答或创新思路写出来吧!)

分数除法教案 篇29

  【学习目标】

  1、掌握已知一个数的几分之几是多少求这个数的稍复杂分数除法应用题的

  解题思路和方法,能比较熟练地解答一些简单的实际问题。

  2、培养并提高分析、判断、探索能力及初步的逻辑思维能力。

  3、提高解答应用题的能力。

  【学习重难点】

  1、重点是弄清单位“1”的量,会分析题中的数量关系。

  2、难点是分析题中的数量关系。

  【学习过程】

  一、复习题:

  小红家买来一袋大米,重40千克,吃了5,还剩多少千克? 8

  1、分析题目的`条件和问题,画出线段图。

  2、交流讨论并解答。组内检查核对,提出质疑。

  1”,如果单位“1”的具体数量是已

  知的,要求单位“1”的几分之几是多少,就可以根据分数乘法的意义,

  直接用乘法计算。

  二、探索新知

  1、补充例题:小红家买来一袋大米,吃了

  (1)吃了5,还剩15千克。买来大米多少千克? 85是什么意思?应该把哪个数量看作单位“1”? 8

  (2)理解题意,画出线段图。 (3)根据线段图,分析数量关系式:____________________________

  (4)根据等量关系式解答问题。___________________________

  2、学习例2

  (1)阅读例5的主题图及题目,用自己的话表述题意,说一说“美术小组的人数比航模

  小组多1”的含义,把谁看作单位“1”?_________________________________ 4

  (2)自己动手,画线段图表示两个小组的人数,将已知条件和问题标注在线段图上,图

  中的未知数可以用x表示。

  (3)结合线段图,写出等量关________________________________________________

  (4)列出方程式并解答,算完后梳理一下自己整道题的解题思路?(注意解题格式)

  三、知识应用:独立完成p40练习十第4题,组长检查核对,提出质疑。

  四、层级训练:1、巩固训练:完成练习十第10--13题

  2、拓展提高:练习十第14题以及p42最后一题“思考练习”。

  五、总结梳理:回顾本节课的学习,说一说你有哪些收获?

  学习心得__________( a.我很棒,成功了; b.我的收获很大,但仍需努力。) 自我展示台:(写出你的发现或见解)

分数除法教案 篇30

  教学内容:

  教材第29-30页的内容。

  教学目标:

  1.能用方程解决简单的有关分数的实际问题,初步体会方程是解决实际问题。

  2.探索并掌握分数除以整数的计算方法,并能正确计算。

  3.能够运用分数除以整数解决简单的实际问题。

  教学重点:

  分析分数除法应用题中数量间的关系,用方程解答分数除法应用题。

  教学难点:

  运用分数除以整数解决简单的实际问题。

  教具准备:

  多媒体课件

  预习提纲:

  1.观察课本第29页的图,从中你能获得哪些数学信息呢?

  2.根据这些数学信息你能提出哪些问题?

  3.分析例题,写出等量关系,并试用方程解答。

  4.想想还有别的算法吗?

  教学过程:

  一、创设情境,引发探究

  1.同学们喜欢课外活动吗?你们喜欢参加哪些课外活动?

  2.课件出示:从画面中你能获得哪些数学信息呢?这些数量之间有什么关系?

  (1)打篮球的人数是踢足球的4/9.

  (2)踢毽子的人数是踢足球的1/3.

  (3)跳绳的人数是参加活动总人数的2/9.

  ……

  二、提出问题,自主探究

  1.根据这些数学信息你能提出哪些问题?

  操场上一共有27人参加活动,跳绳的小朋友人数是操场上参加活动总人数的2/9.跳绳的有多少人?

  列出这题的等量关系,并解答。全班交流。

  2.还能提出哪些数学问题,引出例题

  跳绳的小朋友有6人,是操场上参加活动总人数的2/9。操场上有多少人参加活动?

  这道题与上题有哪些区别和联系呢?能找到这道题的数量关系吗?

  你能用方程的知识,解决这样的问题吗?应该如何解设?小组讨论,再由教师指名在黑板上演示。

  解:设操场上有x人参加活动。

  χ×2/9=6

  χ×2/9÷2/9=6÷2/9

  χ×=27

  3.想一想,还有别的算法吗?怎么算?为什么?

  6÷2/9=27(人)

  三、巩固练习,实践探究

  刚才同学们根据图中的数学信息,提出了很多的数学问题,这些数学问题,你们能解答吗?

  1.操场上打篮球的有4人。

  (1)打篮球的人数是踢足球人数的4/9,踢足球的人数是多少?

  (2)踢毽子的人数是踢足球人数的1/3,踢毽子的人数是多少?

  (3)操场上踢足球的'有9人,是操场上参加活动总人数的1/3,操场上参加活动有多少人?

  (4)操场上踢毽子的有3人,是操场上参加活动总人数的1/9,是操场上参加活动总人数的1/3。

  2.某月双休日 9天,是这个月总天数的3/10,这个月有多少天?

  (板演过程中,着重分析学生可能存在的误解之处。)

  3.根据以下方程,编出相应的应用题。

  χ×1/5=30 χ×2/3=40

  四、回顾反思,总结全课。

  通过这节课的学习你有哪些收获?

【分数除法教案】相关文章:

《除法的初步认识》教案(30篇)08-02

分数除法课件(18篇)08-03

分数与除法数学课件(7篇)08-03

口算除法教案(30篇)08-04

【荐】分数的意义教案30篇08-04

分数乘法的教案(30篇)08-05

《小数乘法和除法》教案(16篇)08-06