课件

圆柱体积教学课件

时间:08月02日 网络精选 课件 我要投稿

【荐】圆柱体积教学课件11篇

  在这个充满知识探索的世界里,每一步的学习都是向未知领域迈进的重要步伐。对于数学教育而言,圆柱体积的教学不仅是培养学生逻辑思维与空间想象能力的关键环节,更是连接理论与实践的桥梁。今天,我们特意为大家精选了几篇关于圆柱体积教学的优秀课件范文,这些文档深入浅出地讲解了圆柱体积的计算方法及其实际应用,不仅适合教师作为教学参考,也十分推荐家长和学生共同学习。希望通过这些精心准备的资料,能够激发大家对数学的兴趣,提升解决问题的能力。快来一起探索吧!

《圆柱的体积》教学方案课件 篇1

  教材来源:小学六年级《数学》教科书/人民教育出版社2009版 内容来源:小学六年级数学(下册)第二单元 主 题:圆柱的体积 课 时:共1课时, 授课对象:六年级学生 设 计 者:

  目标确定的依据

  1、课程标准相关要求

  (1)通过观察、操作,认识长方体、正方体、圆柱和圆锥,认识长方体、正方体和圆柱的展开图。

  (2)结合具体情境,探索并掌握长方体、正方体、圆柱的体积和表面积以及圆锥体积的计算方法。

  2、教材分析

  《圆柱的体积》是在学生初步认识了圆柱体的基础上,进一步研究圆柱体的特征,让学生比较深入地研究立体几何图形,是学生发展空间观念的又一次飞跃。圆柱体是基本的立体几何图形,通过学习,可以培养学生形成初步的空间观念,为下一步学习“圆锥的体积”打下基础。。

  3、学情分析

  六年级的学生已经有了较丰富的生活经验,这些感性经验是他们进一步学习的基础,本节课的学习过程正是让学生的感性经验上升到理性经验的过程,符合学生的年龄特征和认知规律,在这一过程中,能使学生体会到认识事物和归纳事物特征的方法,学会运用数学的思维方式去认识世界。

  学习目标

  1、结合具体情境和实践活动,理解圆柱体积的含义。

  2、探索并掌握圆柱体积的计算方法,能正确计算圆柱的体积,并会解决一些简单的实际问题。

  评价任务

  任务1: 想一想,我们当初是如何推导出圆的面积计算公式的呢?

  任务2: 现在能否采用类似的方法将圆柱切割拼合成一个学过的立体图形来求它的体积呢? 探索推导出圆柱体体积计算的公式。

  任务3: 能正确计算圆柱的体积,并会解决一些简单的实际问题,完成练习中的第1、2题。

  教学过程

  《圆柱的表面积和体积的练习》教学方案

  教材来源:小学六年级《数学》教科书/人民教育出版社2009版 内容来源:小学六年级数学(下册)第二单元 主 题:圆柱的表面积和体积比较 课 时:共1课时, 授课对象:六年级学生

  设 计 者:周伟红/新密市市直第二小学

  目标确定的依据

  1、课程标准相关要求

  (1)通过观察、操作,认识长方体、正方体、圆柱和圆锥,认识长方体、正方体和圆柱的展开图。

  (2)结合具体情境,探索并掌握长方体、正方体、圆柱的体积和表面积以及圆锥体积的计算方法。

  2、教材分析

  本节课是在学生学习了《圆柱的表面积》和《圆柱体积》基础上进行的,旨在进一步研究圆柱体的表面积和体积的区别,是学生发展空间观念的又一次飞跃。通过本课练习,让学生在解决实际问题的过程中,进一步理解和掌握圆柱的表面积和体积公式,感受所学的数学知识的应用价值。

  3、学情分析

  单独计算圆柱的表面积和体积,学生基本上都没问题,只是计算上的错误。但是如果解决圆柱的实际问题,有一部分学生不知道到底是求圆柱哪几个面的面积,不能正确运用公式解决实际问题。

  学习目标

  1、进一步熟练求圆柱体表面积和体积的方法。

  2、能根据实际情况运用计算公式解决一些实际问题。

  评价任务

  任务1: 回答:怎样计算圆柱的表面积和体积呢 任务2: 求下面各圆柱的表面积体积

  任务3: 能正确运用圆柱的表面积和体积,解决一些简单的实际问题。

  教学过程

  篇二:圆柱体积的教学设计

  教学内容:

  人教版《九年义务教育六年制小学数学教科书》(第十二册)第25页圆柱体积公式的推导及“做一做”以及补充习题。 教材简析:

  圆柱是一种含有曲面的几何体,给体积的认识和计算增加了难度。教材将本课学习安排在圆柱的认识和圆柱的表面积之后。让学生有序地经历了探究物体与图形的形状、大小、位置关系的变换过程,掌握圆柱体积的计算方法和公式的推导过程,建立初步的空间概念,培养形象思维,还可以为学习圓锥体积打下坚实的基础,提高学生的知识迁移能力。基于以上认识,我在设计中突出了以下几点:

  1.加强几何的实践操作,尽量让学生自己动手,亲身经历圆柱的体积转化过程,让学生的多种感观参与学习活动。在理解知识的基础上,发展学生思维。

  2.加强几何习题的设计,设计一些实践性、开放性强的习题,引导学生灵活运用知识,可以根据不同的条件求圆柱的体积。尽可能地满足不同思维水平学生的需要,并渗透优化解题策略。

  3.加强空间观念的培养,提高学生形象思维及解决问题的能力。突出知识间的联系对比,在操作、推导、对比、运用中深化学生的空间观念。

  学情分析:

  高年级学生发现问题、解决问题能力逐步增强,这为学生的自主探究及合作学习创造了有利条件,他们在学习圆的面积计算公式时已经掌握了一些几何知识,了解部分几何图形之间的转化方法。但学生的立体空间观念还不是完全成熟,形体之间的转化还有一定的困难。针对学生的实际,教学中我主要采用观察、比较、操作等方法。组织学生探索规律,归纳总结,体验知识的生成和形成。

  教学目标:

  1.结合具体情境,让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。

  2.让学生经历观察、猜想、验证等数学活动过程,培养学生探究推理能力,体验数学研究的方法。

  3.通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。

  教学重点:掌握和运用圆柱体积计算公式。(突破方法:通过观察,猜想,验证等数学活动掌握圆柱体积计算公式,在解决问题中提高运用公式的能力)

  教学难点:掌握圆柱体积公式的推导过程。(突破方法:通过设疑,猜想,验证的过程,完成圆柱体积计算公式的推导)

  教法:直观教学法,先利用教具演示让学生观察比较,再让学生动手操作。

  学法:探究性学习法,在实践操作过程中理解掌握圆柱体积的计算方法。

  教学设想:

  1.课前互动,我们做一个吹气球的游戏,让学生来对比气球变大后所占用空间的变化。在热烈的气氛中让学生感受物体的体积就是物体所占用空间的大小。

  2.教学一开始我让学生说说我们学过哪些物体的体积?这些图形有什么特征,而圆柱有什么特征?前面我们学过哪个图形利用了化曲为直的思想?引导学生明白圆柱的体积利用类似求圆的面积计算公式一样来探讨问题设疑,让学生明确学习目标。

  3.动手实践是学生体验的主要方式,合作交流是学生体验的有效途径。所以在教学中我为图形转化、猜想推理创设有助于学生自主探究的三步曲:第一步:选择转化的方法。第二步:体验转化的过程、第三步:验证转化的结果。引导学生开展观察、操作、猜想、交流、转化的活动,让学生在数学活动中经历数学、体验数学。

  4.最后的思维训练是计算正方体中最大圆柱体的体积,给学生以生动、形象、直观的认识,此题算法多样,富于启发地清晰揭示了知识的内在规律,使它和教学过程有机组合,把学习延伸到实际,让知识在体验中生成。

  教学过程:

  一、问题导入,质疑问难

  师:老师这里有两个气球,(师从兜里掏出两个气球,将其中一个递给学生。)你试试把它们变大。(老师再把两个气球放回兜里。)为什么这个放不回去了?(因为其中一个的体积变大了。)看来它占据了很大的空间。教室中还有哪些物体占据空间? 引导出概念:物体所占空间的大小为物体的体积。

  师:我们今天这节课学习体积,我们就一起来探索圆柱的体积的.计算方法。

  板书课题:圆柱的体积

  二.探索新知

  1.出示光盘,这是什么图形?(圆形)

  提问:这个圆,可以知道什么?(半径、直径、周长、面积)

  2.在桌面上,在一张光盘上叠加一些光盘,发现,这些光盘形成了一个什么图形?(圆柱)。

  继续叠加,提问:圆柱在变化吗?(变高了,体积变大了) 追问:什么没有变?(底面积)

  猜想:圆柱的体积会和什么有关?(底面积和高)

  3、出示和(内底相等)光盘的烧杯,倒入和圆柱光盘等高的

  (1)提问:它们之间有什么关系?(体积相等)

  那么,烧杯里的水有多少呢?你有什么好办法?

  (生:把烧杯里的水分别倒入长方体、正方体玻璃器皿中,计算

  长方体、正方体的体积)

  (2)你觉得圆柱的体积和什么有关系?(长方体和正方体体积有关)

  (设计意图:从生活情景入手,初略感知圆柱的体积与底面积和高有关。通过猜想,并在实验、交流中建立初步的圆柱体积与长方体和正方体体积的计算方法有关的直观感知。然后顺势提出“如何计算圆柱体的体积”这一全课的核心问题,从而引发学生的猜测、操作、交流等数学活动,为学生经历了“做数学”的过程做铺垫。)

  三、图柱转化,自主探究,验证猜想。

  (材料:圆柱体积木、圆柱体插拼教学具、课件)

  1.教师出示一个烧杯,烧杯里的水有多少呢?体积你们会算吗? 提示:(1)以前学过的长方体和正方体的体积,对我们研究圆柱体体积有帮助吗?

  (2)你觉得圆柱的体积和什么有关系?你能猜一猜圆柱的体积怎样计算吗?

  1.小组合作交流:怎样将圆柱体转化成一个长方体呢?

  2.小组代表汇报

  (学生按照自己的方式来转化,会有多种转化方法,教师适时加以鼓励)

  1

  .演示操作

  (1)请一名学生演示用切插拼的方法把圆柱体转化成长方体。

  篇三:圆柱的体积教学设计

  圆柱的体积

  【教学目标】1、 理解圆柱体积公式的推导过程。

  2、 能够初步地学会运用体积公式解决简单的实际问题。

  3、 进一步提高学生解决问题的能力。

  【教学重点】1、 理解圆柱体积公式的推导过程。

  2、 能够初步地学会运用体积公式解决简单的实际问题。

  【教学难点】 理解圆柱体积公式的推导过程。

  【教学过程】

  活动一:复习旧知。

  1、 什么是体积?(指名说)

  物体所占空间的大小叫做物体的体积。

  2、 长方体的体积该怎样计算?归纳到底面积乘高上来)

  3、 圆的面积怎样计算?

  4、 圆是把圆面积转化成近似的长方形面积进行计算的。的面积是怎样推倒得来的?

  活动二:经历圆柱体积的推导过程,得出公式。

  1、 计算圆的面积时,是把圆面积转化成我们学过的长方形进行计算的,能不能把圆柱转化成我们学过的立体

  图形来计算它的体积?

  启发学生思考。

  2、 把圆柱的底面分成许多相等的扇形(16等分),然后把圆柱沿高切开,可能会拼成怎样的图形?教师演示。

  引导学生进行观察。

  3、 思考:

  1) 圆柱切开后可以拼成一个什么形体?

  2) 通过实验你发现了什么?

  小组讨论:实验前后,什么变了?什么没变?

  讨论后,整理出来,再进行汇报。

  *拼成的近似长方体体积大小没变,形状变了。

  *拼成的近似长方体和圆柱相比,底面形状变了,由圆变成了近似长方形,而底面的面积大小没有发生变化。

  *近似长方形的高就是圆柱的高,没有变化。

  4、根据圆面积的推导公式进行猜想:说说你猜想的结果。

  如果把圆柱体32等份,64等份,128等份拼成的长方体的形状怎么样?生;平均分的分数越多,拼起来的形体越近似于长方体。

  2、 通过以上的观察你发现了什么?

  师:平均分的分数越多,每分扇形的底面就越小,弧就越短,拼成的长方体的长就越近似于一条线段,这样整个形体就越近似于长方体。

  3、 推导圆柱体积公式。

  小组讨论:怎样计算圆柱的体积?

  学生汇报讨论结果。

  长方体的体积可以用底面积乘高来计算,而在推导过程中,长方体的底面积就是圆柱的底面积,高就是圆柱的高,所以圆柱的体积也可以用底面积乘高来计算。

  师:圆柱的体积怎样计算?用字母公式,怎样表示?

  板书: V=Sh

  4、 算一算:已知一根柱子的底面半径为 0.4米,高为5米。你能算出它的体积吗?

  要求这根柱子的体积,要先求什么?

  请你先求底面积,再求体积,自己试计算。请生板演。

  活动三:试一试。

  1、 一个圆柱形水桶,从桶内量得底面直径是3分米,高是4分米,这个水桶的容积是多少升?

  正确理解题意,自己完成。

  说明:求水桶的容积,就是求水桶的体积。想一想先求什么?

  2、 一根圆柱形铁棒,底面周长是12.56厘米,长是100厘米,它的体积是多少?

  先求底面半径再求底面积,最后求体积。

  已知底面周长对解决问题有什么帮助吗?必须先求出什么?

  【板书设计】

  圆柱的体积

  圆柱的体积=底面积x高

  V=Sh

  【课后反思】

  圆柱的体积练习

  【教学目标】

  1、 进一步理解圆柱体积公式的由来。

  2、 能灵活地运用公式解决一些简单的实际问题,提高解决问题的能力。

  【教学重点】能灵活地运用公式解决一些简单的实际问题,提高解决问题的能力。

  【教学难点】能灵活地运用公式解决一些简单的实际问题,提高解决问题的能力。

  【教学过程】

  活动一:复习圆柱体积的计算公式。

  1、 长、正方体的体积都可以用什么公式进行计算?

  2、 圆柱的体积该怎样计算?

  指名请学生说。明确:长、正方体和圆柱的体积都可以用底面积乘高来进行计算。

  活动二:解决简单的实际问题。

  1、 看图计算下面各圆柱的体积。

  说说每个图已知什么和什么,求什么?怎么求?

  2、 一个底面直径是14厘米,高是20厘米的杯子。能装下3000毫升的牛奶多少杯?

  要求能装多少杯牛奶,必须先求什么?

  自己试独立计算,请同学板演。集体讲评。

  请先求杯子的容积,再求能装几杯?自己独立计算。

  3、 一个装满稻谷的圆柱形粮屯,底面面积为2平方米,高为80厘米。每立方米稻谷约重600千克,这个粮屯存放的稻谷约重多少千克?通过读题,你发现了什么?(要换算单位)

  要求这个粮屯能存放多少稻谷,必须先求什么?(先求体积)明确题意后,自己独立计算。

  4、 一个正方体的棱长4分米,一个圆柱的底面直径2分米,高4分米。这两个立体图哪个面积大?为什么?

  师:高相等,可以比较底面积的大小。

  先独立思考,然后同桌交流自己的想法。说说看不计算,怎样判断他们的大小?

  5、 一个圆柱形容器的底面直径是10厘米,把一块铁块放入这个容器中,水面上升2厘米,这块铁块的体积是多少?

  这个铁块的体积和什么有关系?求铁块的体积就是求什么?

  求铁块的体积就是求底面直径是10厘米,高2厘米的圆柱形的水的体积。

  6、 一根圆柱形木料底面周长是12.56分米,高是4米。

  1) 它的表面积是多少平方米?

  2) 它的体积是多少立方米?

  3) 如果把它截成三段小圆柱,表面积增加多少平方分米?

  圆柱的表面积包括什么?怎样计算?侧面积怎样计算?

  体积怎样计算?要求底面积先求什么?

  表面积增加的部分是什么?增加了几个底面?必须先求什么?弄清题意,自己计算。

圆柱体积教学课件 篇2

  教学目标:

  1、通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,能够运用公式正确地计算圆柱的体积和容积。

  2、初步学会用转化的数学思想和方法,解决实际问题的能力

  3、渗透转化思想,培养学生的自主探索意识。

  教学重点:

  掌握圆柱体积的计算公式。

  教学难点:

  圆柱体积的计算公式的推导。

  教学过程:

  一、复习

  1、长方体的体积公式是什么?正方体呢?(长方体的'体积=长×宽×高,长方体和正方体体积的统一公式“底面积×高”,即长方体的体积=底面积×高)

  2、拿出一个圆柱形物体,指名学生指出圆柱的底面、高、侧面、表面各是什么,怎么求。(删掉)

  3、复习圆面积计算公式的推导过程:把圆等分切割,拼成一个近似的长方形,找出圆和所拼成的长方形之间的关系,再利用求长方形面积的计算公式导出求圆面积的计算公式。

  师小结:圆的面积公式的推导是利用转化的思想把一个曲面图形转化成以前学的长方形,今天我们学习圆柱体体积公式的推导也要运用转化的思想同学们猜猜会转化成什么图形?

  二、新课

  1、圆柱体积计算公式的推导。

  (1)用将圆转化成长方形来求出圆的面积的方法来推导圆柱的体积。(沿着圆柱底面的扇形和圆柱的高把圆柱切开,可以得到大小相等的16块,把它们拼成一个近似长方体的立体图形——课件演示)

  (2)由于我们分的不够细,所以看起来还不太像长方体;如果分成的扇形越多,拼成的立体图形就越接近于长方体了。(课件演示将圆柱细分,拼成一个长方体)

  反复播放这个过程,引导学生观察思考,讨论:在变化的过程中,什么变了什么没变?

  长方体和圆柱体的底面积和体积有怎样的关系?

  学生说演示过程,总结推倒公式。

  (3)通过观察,使学生明确:长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。(长方体的体积=底面积×高,所以圆柱的体积=底面积×高,v=sh)

圆柱体积教学课件 篇3

  教学目标:

  1.知识与技能:运用迁移规律,引导学生借助圆面积计算公式的推导方法来推导圆柱的体积计算公式,会用圆柱的体积公式计算圆柱形物体的体积。

  2.方法与过程:经历猜测、验证、合作、 等过程,体验和理解圆柱体体积公式的推导过程。

  3情感、态度、价值观:创设情境,激发学生学习的积极性。让学生在主动学习的基础上,逐步学会转化的数学思想和数学法,培养学生解决实际问题的能力和培养学生抽象、概括的思维能力。

  教学重点和难点:

  圆柱体积公式推导过程;正确理解圆柱体积公式推导过程。

  教 具:

  圆柱的体积公式演示教具,圆柱的体积公式演示课件

  教学过程:

  一、教学回顾

  1、交代任务:我们认识了圆柱,学习了圆柱的表面积,这节课我们来学习《圆柱的体积》。

  2、回忆导入

  (1)、请大家想一想,我们在学习圆的面积时,是怎样把圆变成已学过的图形再计算面积的?

  (2)、我们都学过那些立体图形的体积公式。

  二、学习目标:

  1、理解圆柱体积的含义。

  2、通过操作活动,探索圆柱体积的计算方法,感受转化的数学思想。

  3、能运用圆柱的体积公式正确进行计算。

  三、积极参与 探究感受

  1、利用圆面积的推导,猜测圆柱的体积和那些条件有关。自学课本19页并思考以下3个问题

  1、你想把圆柱转化成我们以前学过的什么立体图形?

  2、你是怎样转化成这个立体图形的?

  3、转化后的立体图形和圆柱之间有什么关系?

  2、.探究推导圆柱的体积计算公式。(电脑演示)

  小组合作讨论:

  (1)将圆柱体切割拼成我们学过的什么立体图形?

  (2)切拼前后的两个物体什么变了?什么没变?

  (3)切拼前后的两个物体有什么联系?

  课件演示拼、组的过程,同时演示一组动画(将圆柱底面等分成32份、64份……),让学生明确:分成的扇形越多,拼成的立体图形就越接近于长方体。

  ①把圆柱拼成长方体后,形状变了,体积不变。(板书:长方体的体积=圆柱的体积)

  ②拼成的长方体的底面积等于圆柱的底面积,高就是圆柱的高。配合回答,演示课件,闪烁相应的部位,并板书相应的内容。)

  ③圆柱的体积=底面积×高 字母公式是v=sh(板书公式)

  2、练一练:一根圆柱形木料,底面积为75平方厘米,长90厘米,它的体积是多少?

  3、要用这个公式计算圆柱的体积必须知道什么条件?

  4、汇总:长方体、正方体、圆柱的体积都可以用底面积乘高来计算。

  5、试一试:填表

  6、讨论:(1)已知圆柱底面的半径和高,怎样求圆柱的体积

  v= 兀r2 × h

  (2)已知圆柱底面的直径和高,怎样求圆柱的体积

  v=兀(d÷2)2×h

  (3)已知圆柱底面的周长和高,怎样求圆柱的体积

  v=兀(c÷兀÷2) ×h

  三、巩固练习

  1、填空

  (1)、圆柱体通过切拼转化成近似的 ( ) 体。这个长方体的底面积等于圆柱体的( ),这个长方体的高等于圆柱体( ) 。因为长方体的体积等于( ),所以,圆柱体的体积等于( )用字母表示( ) 。

  (2)、判断。

  (3)、已知圆柱底面的半径和高,怎样求圆柱的体积

  已知圆柱底面的直径和高,怎样求圆柱的体积

  (3)已知圆柱底面的周长和高,怎样求圆柱的体积

  四、小结或质疑

  五、五、作业

  六、板书设计:

  圆柱的体积

  长方体的体积=底面积x高

  圆柱的体积=底面积x高

  v=sh

圆柱体积教学课件 篇4

  教学目标:

  1、通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,能够运用公式正确地计算圆柱的体积和容积。

  2、初步学会用转化的数学思想和方法,解决实际问题的能力

  3、渗透转化思想,培养学生的自主探索意识。

  教学重点:

  掌握圆柱体积的计算公式。

  教学难点:

  圆柱体积的计算公式的推导。

  教学过程:

  一、复习

  1、长方体的体积公式是什么?正方体呢?(长方体的'体积=长×宽×高,长方体和正方体体积的统一公式“底面积×高”,即长方体的体积=底面积×高)

  2、拿出一个圆柱形物体,指名学生指出圆柱的底面、高、侧面、表面各是什么,怎么求。(删掉)

  3、复习圆面积计算公式的推导过程:把圆等分切割,拼成一个近似的长方形,找出圆和所拼成的长方形之间的关系,再利用求长方形面积的计算公式导出求圆面积的计算公式。

  师小结:圆的面积公式的推导是利用转化的思想把一个曲面图形转化成以前学的长方形,今天我们学习圆柱体体积公式的推导也要运用转化的思想同学们猜猜会转化成什么图形?

  二、新课

  1、圆柱体积计算公式的推导。

  (1)用将圆转化成长方形来求出圆的面积的方法来推导圆柱的体积。(沿着圆柱底面的扇形和圆柱的高把圆柱切开,可以得到大小相等的16块,把它们拼成一个近似长方体的立体图形——课件演示)

  (2)由于我们分的不够细,所以看起来还不太像长方体;如果分成的扇形越多,拼成的立体图形就越接近于长方体了。(课件演示将圆柱细分,拼成一个长方体)

  反复播放这个过程,引导学生观察思考,讨论:在变化的过程中,什么变了什么没变?

  长方体和圆柱体的底面积和体积有怎样的关系?

  学生说演示过程,总结推倒公式。

  (3)通过观察,使学生明确:长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。(长方体的体积=底面积×高,所以圆柱的体积=底面积×高,V=Sh)

圆柱体积教学课件 篇5

  教学目标:

  1.知识与技能:运用迁移规律,引导学生借助圆面积计算公式的推导方法来推导圆柱的体积计算公式,会用圆柱的体积公式计算圆柱形物体的体积。

  2.方法与过程:经历猜测、验证、合作、 等过程,体验和理解圆柱体体积公式的推导过程。

  3情感、态度、价值观:创设情境,激发学生学习的积极性。让学生在主动学习的基础上,逐步学会转化的数学思想和数学法,培养学生解决实际问题的能力和培养学生抽象、概括的思维能力。

  教学重点和难点:

  圆柱体积公式推导过程;正确理解圆柱体积公式推导过程。

  教 具:

  圆柱的体积公式演示教具,圆柱的体积公式演示课件

  教学过程:

  一、教学回顾

  1、交代任务:我们认识了圆柱,学习了圆柱的表面积,这节课我们来学习《圆柱的体积》。

  2、回忆导入

  (1)、请大家想一想,我们在学习圆的面积时,是怎样把圆变成已学过的图形再计算面积的?

  (2)、我们都学过那些立体图形的体积公式。

  二、学习目标:

  1、理解圆柱体积的含义。

  2、通过操作活动,探索圆柱体积的计算方法,感受转化的数学思想。

  3、能运用圆柱的体积公式正确进行计算。

  三、积极参与 探究感受

  1、利用圆面积的推导,猜测圆柱的体积和那些条件有关。自学课本19页并思考以下3个问题

  1、你想把圆柱转化成我们以前学过的什么立体图形?

  2、你是怎样转化成这个立体图形的?

  3、转化后的立体图形和圆柱之间有什么关系?

  2、.探究推导圆柱的体积计算公式。(电脑演示)

  小组合作讨论:

  (1)将圆柱体切割拼成我们学过的什么立体图形?

  (2)切拼前后的两个物体什么变了?什么没变?

  (3)切拼前后的两个物体有什么联系?

  课件演示拼、组的过程,同时演示一组动画(将圆柱底面等分成32份、64份……),让学生明确:分成的扇形越多,拼成的立体图形就越接近于长方体。

  ①把圆柱拼成长方体后,形状变了,体积不变。(板书:长方体的体积=圆柱的体积)

  ②拼成的长方体的底面积等于圆柱的底面积,高就是圆柱的高。配合回答,演示课件,闪烁相应的部位,并板书相应的内容。)

  ③圆柱的体积=底面积×高 字母公式是V=Sh(板书公式)

  2、练一练:一根圆柱形木料,底面积为75平方厘米,长90厘米,它的体积是多少?

  3、要用这个公式计算圆柱的体积必须知道什么条件?

  4、汇总:长方体、正方体、圆柱的体积都可以用底面积乘高来计算。

  5、试一试:填表

  6、讨论:(1)已知圆柱底面的半径和高,怎样求圆柱的体积

  V= 兀r2 × h

  (2)已知圆柱底面的直径和高,怎样求圆柱的体积

  V=兀(d÷2)2×h

  (3)已知圆柱底面的周长和高,怎样求圆柱的体积

  V=兀(C÷兀÷2) ×h

  三、巩固练习

  1、填空

  (1)、圆柱体通过切拼转化成近似的 ( ) 体。这个长方体的底面积等于圆柱体的( ),这个长方体的高等于圆柱体( ) 。因为长方体的体积等于( ),所以,圆柱体的体积等于( )用字母表示( ) 。

  (2)、判断。

  (3)、已知圆柱底面的半径和高,怎样求圆柱的体积

  已知圆柱底面的直径和高,怎样求圆柱的体积

  (3)已知圆柱底面的周长和高,怎样求圆柱的体积

  四、小结或质疑

  五、五、作业

  六、板书设计:

  圆柱的体积

  长方体的体积=底面积x高

  圆柱的体积=底面积x高

  V=Sh

圆柱的体积小学生教学课件 篇6

  教学目的:使学生系统掌握关于圆柱和圆锥的基础知识,进一步了解圆柱和圆锥的关系,熟练运用所学公式计算解答实际问题;

  教学准备:幻灯片、电脑制图

  教学过程:

  一. 出示课题,引人复习内容;

  1.同学们,今天这节课,我们要进行“圆柱体和圆锥体体积的复习”;

  板书课题

  2.圆柱体的体积怎么求?

  板书:V圆柱=Sh

  3.圆锥体的体积怎么求?

  板书:V圆锥=1/3 Sh

  4.公式中的 s、h分别表示什么?1/3表示什么?

  小结:求圆柱体和圆锥体的体积,首先要正确应用公式。

  板书:1.正确应用公式

  当题目中没有直接告诉我们底面积,只给出底面的半径、直径或周长时,求它们的体积必须先求出什么?

  二. 基础练习

  根据已知条件求圆柱体和圆锥体的底面积(幻灯出示)

  计算这些形体的体积:

  (1)S底=1.5 平方米 h=5 米 求V圆柱

  (2)S底=1.5 平方米 h=5 米 求V圆锥

  (3)r=10分米 h=2 米 求V圆柱

  (4)C=6.28米 h=6 米 求V圆锥

  (1)、 (2)两题条件相同,所求不同;

  板书:2. 圆锥体积一定要乘 1/3

  (3)、 (4)两题都要先求出底面积;

  板书:3. 单位名称要统一

  三. 实际应用练习:

  我们还可应用到生活中去解决一些实际问题:(幻灯出示)

  1.一根圆柱形钢材长2米,底面周长为6.28厘米,如果1立方厘米钢重8克,100根这样的钢材重多少千克?

  默读后问同学:做这道题前有没有准备工作要做?(单位要统一)

  2.一个圆锥形麦堆,底面直径4米,高1.5米,按每立方米麦重700千克算,这堆麦重多少千克?

  默读后问同学:要注意麦堆是什么形状?

  请两位同学板演,其余在本子上自练;

  3.小结:在解这两题时都用到了什么计算?

  四. 提高练习:

  (幻灯出示)在一只底面半径为30厘米的圆柱形水桶里,放入一段底面半径为10厘米的圆锥形钢材,水面升高了5厘米,这段钢材高为多少?

  (电脑出示图案)观察水面变化情况,求什么?

  1.钢材是什么形状?求圆锥体的高用什么方法?h=3V/S,3V表示什么?

  2. S可以通过哪个条件求?( r=10厘米)

  3.体积是什么呢?(电脑屏幕逐步演示)

  (1)当钢材放入时水面上升,取出时水面下降,和什么有关?

  (2)放入时水面为什么会上升?

  (3)圆锥体占据了水桶里哪一部分水的体积?

  (4)上升的水的体积等于什么?

  (5)求圆锥形钢材的体积就是求什么?

  (6)求这部分水的体积可通过哪些条件求?(r=30厘米,h=5厘米)

  (7)板演,同学自练;

  五. 圆柱体、圆锥体之间的关系是很密切的,下面我们来研究一下:

  1.当圆柱体与圆锥体等底等高时,圆柱的体积是圆锥体积的3倍;(逆向)

  2.当圆柱体与圆锥体体积相等,底面积相等时,圆锥的高是圆柱的3倍;

  3.当圆柱体与圆锥体体积相等,高也相等时,圆柱的底面积是圆锥底面积的1/3,圆锥底面积是圆柱底面积的3倍。

  六、总结:

圆柱的体积小学生教学课件 篇7

  教学目的:

  1、运用迁移规律,引导学生借助因面积计算公式的推导方法来推导圆柱的体积计算公式,并理解这个过程。

  2.会用圆柱的体积计算圆柱形物体的体积和容积,运用公式解决一些简单的问题。

  3.引导学生逐步学会转化的数学思想和数学法,培养学生解决实际问题的能力

  4.借助实物演示,培养学生抽象、概括的思维能力。

  教 具:圆柱的体积公式演示教具,多媒体课件

  教学过程:

  一、情景引入

  1、出示圆柱形水杯。

  (1)老师在杯子里面装满水,想一想,水杯里的水是什么形状的?(2)你能用以前学过的方法计算出这些水的体积吗?

  (3)讨论后汇报:把水倒入长方体容器中,量出数据后再计算。(4)说一说长方体体积的计算公式。

  2、创设问题情景。(课件显示)

  如果要求压路机圆柱形前轮的体积,或是求圆柱形柱子的体积,还能用刚才那样的方法吗?刚才的方法不是一种普遍的方法,那么在求圆柱体积的时候,有没有像求长方体或正方体体积那样的计算公式呢?

  今天,我们就来一起研究圆柱体积的计算方法。(出示课题:圆柱的体积)(设计意图:问题是思维的动力。通过创设问题情景,可以引导学生运用已有的生活经验和旧知,积极思考,去探索和解决实际问题,并能制造认知冲突,形成“任务驱动”的探究氛围。)

  二、新课教学:

  设疑揭题:我们能把一个圆采用化曲为直、化圆为方的方法推导出了圆面积的计算公式,现在能否采用类似的方法将圆柱切割拼合成一个学过的立体图形来求它的体积呢?今天我们一起来探讨这个问题。板书课题:圆柱的`体积。

  1.探究推导圆柱的体积计算公式。

  课件演示拼、组的过程,同时演示一组动画(将圆柱底面等分成32份、64份……),让学生明确:分成的扇形越多,拼成的立体图形就越接近于长方体。c、依次解决上面三个问题。①把圆柱拼成长方体后,形状变了,体积不变。(板书:长方体的体积=圆柱的体积) ②拼成的长方体的底面积等于圆柱的底面积,高就是圆柱的高。配合回答,演示课件,闪烁相应的部位,并板书相应的内容。)③圆柱的体积=底面积×高 字母公式是v=sh(板书公式)

  讨论并得出结果。你能根据这个实验得出圆柱的体积计算公式吗?为什么?让学生再讨论:圆柱体通过切拼,圆柱体转化成近似的 体。这个长方体的底面积与圆柱体的底面积 ,这个长方体的高与圆柱体的高 。因为长方体的体积等于底面积乘以高,所以,圆柱体的体积计算公式是: 。(板书:圆柱的体积=底面积×高)用字母表示: 。(板书:v=sh)(设计意图:在新课教学中,先让学生通过复习旧知识,在观察中理解,在比较中归纳,通过这些措施可以使学生切实经历圆柱体积公式充分体现了教师的主导作用和学生的主体作用。这样的教学,不仅有利于学生理解算理,掌握算法,而且在公式的推导过程中,领悟了学习方法,培养了学生的学习能力、抽象概括能力和逻辑思维能力) laixx

  要用这个公式计算圆柱的体积必须知道什么条件?

  填表:请同学看屏幕回答下面问题,

  底面积(㎡) 高(m) 圆柱体积(m3)

  (设计意图:设计练习能使学生达到举一反三的效果,从而训练学生的技能。这是第一层基本练习,通过这道题可以使学生更好的掌握本课重点,夯实基础知)

  例:一个圆柱形油桶,底面内直径是6分米,高是7分米。它的容积约是多少立方分米?(得数保留整立方分米)

  解: d=6dm,h=7dm.r=3dm

  s底 =πr2=3.14×32 =3.14×9 =28.26(dm2)

  v =s底h =28.26×7 =197.82198dm3 答:油桶的容积约是198立方分

  (设计意图:使学生注意解题格式,注意体积的单位为三次方)

  三。巩固反馈

  1. 求下面圆柱体的体积。(单位:厘米)

  同学板演,其余同学在作业 本上做。板演的同学讲解自己的解题方法题,教师归纳学生所用的解题方法,强调在解题的过程中格式。(设计意图:这是第二层变式练习。是让学生在掌握公式的基础上理解公式,学会灵活运用公式的训练题。通过对公式的拓展性理解,可以进一步加深学生对圆柱体积公式的理解和掌握,同时也能培养学生的逻辑思维能力。)

  练习:(回到想一想中) 圆柱形水杯的底面直径是10cm,高是15cm.已知水杯中水的体积是整个水杯体积的 2/3 计算水杯中水的体积?

圆柱体的体积教学课件 篇8

  教学目标

  1.经历认识圆柱体积,探索圆柱体积计算公式及简单应用的过程。

  2.探索并掌握圆柱体积公式,能计算圆柱的体积。

  3.在探索圆柱体积的过程中,进一步体会转化的数学思想,体验数学的探索性和挑战性,感受数学结论的确定性。

  教学重点

  圆柱体积计算公式的推导过程。

  教学难点

  圆柱体积计算公式的灵活运用。

  教具准备

  圆柱体转化成长方体的模型。

  教学过程

  一、复习铺垫

  1.请同学们回忆一下什么是物体的体积。

  2.(出示幻灯片长方体)这是什么体?怎样计算它的体积?

  同样的方法复习正方体。

  3.长方体和正方体的体积可以用一个统一的公式来表示是怎样的?

  [复习旧知,为后面推导圆柱体积计算公式做铺垫]

  二、情境导入

  师:同学们,你们都知道自己的生日吗?你们都喜欢过生日吗?

  生:喜欢。

  师:为什么?

  生:有礼物,还有生日蛋糕。

  师:今天是亮亮和爷爷的生日,你们观察一下书的图片,发现了什么?

  生:亮亮的一家在一起过生日,亮亮和爷爷都有一个生日蛋糕,而且爷爷的生日蛋糕大,亮亮的生日蛋糕小。

  生:亮亮和爷爷的生日蛋糕都是圆柱形的.。

  师:同学们观察得都很仔细,那么你们说说,爷爷的生日蛋糕,意味着什么?联系我们刚学过的知识来说。

  生:生日蛋糕大,就意味着它的体积大,生日蛋糕小,就是它的体积小。

  师:你们真棒!那么想不想知道两个生日蛋糕的具体大小吗?今天我们就来探讨一个圆柱体的体积公式。

  三、推导、论证

  1.拿出两个不易分辨体积大小的茶叶筒。

  师:你们能说出哪个茶叶筒体积大吗?怎样比较两个茶叶筒体积的大小呢?

  让学生思考和交流。

  2.大家看圆柱的底面是一个圆形,在学习圆面积计算时,我们是把圆转化成哪种图形来计算的?(演示课件:圆转化成长方形)

  3.引发思考:我们能否把圆柱体也转化成学过的立体图形来计算它的体积呢?如果能,猜一猜能转化成哪种立体图形?

  4.师生合作。用教具把圆柱等分成16份,拼成一个近似的长方体。再把圆柱等分32份同样拼成一个近似长方体。观察两次等分的相同点和不同点:

  生:相同点:都可以拼成一个近似的长方体。

  不同点:等分的份数越多,就起接近一个长方体。

  5.同学们观察一下,拼成的长方体和圆柱体有什么关系?你们发现了什么?

  6.学生汇报讨论结果,同时板书。

  生:近似长方体的底面就是圆柱的底面积;近似长方体的高就是圆柱的高;近似长方体的体积就是圆柱的体积。

  7.根据学生的发现引导学生推导出圆柱的体积=底面积×高,用字母表示v=sh。

  四、实际应用

  1.要求圆柱体积,必须知道哪些条件?(生:底面积和高)

  2.如果已知底面积和高,你们会求圆柱的体积吗?

  出示书中的例题:一根圆柱形的钢材,底面积是50平方厘米,高是1.5米。它的体积是多少立方厘米?

  3.学生读题,特别提示统一单位。学生自主计算后全班交流。

  4.反馈练习。p31页练一练1。

  练一练2:理解题意,使学生理解方钢的体积与锻造后的圆柱形体积相等,再自主解答。

  五、家庭作业

  测量你身边的圆柱的体积并向大家汇报你是怎样测量的?比一比看谁的方法最好?

圆柱体的体积教学课件 篇9

  教材分析

  《圆柱的体积》是冀教版六年级数学下册的内容,在学生初步认识了圆柱体的基础上,进一步研究圆柱体的特征,让学生比较深入地研究立体几何图形,是学生发展空间观念的又一次飞跃。圆柱体是基本的立体几何图形,通过学习,可以培养学生形成初步的空间观念,为下一步学习“圆锥的体积”打下基础。

  学情分析

  六年级的学生已经有了较丰富的生活经验,这些感性经验是他们进一步学习的基础,本节课的学习过程正是让学生的感性经验上升到理性经验的过程,符合学生的年龄特征和认知规律,在这一过程中,能使学生体会到认识事物和归纳事物特征的方法,学会运用数学的思维方式去认识世界。

  教学目标

  知识与能力:通过推导圆柱体积公式的过程,向学生渗透转化思想,建立空间观念,培养学生判断、推理的能力和迁移能力。

  过程与方法:结合具体情境和实践活动,理解圆柱体积的含义。探索并掌握圆柱体积的计算方法,能正确计算圆柱的体积,并会解决一些简单的实际问题。

  情感态度与价值观:感悟数学知识的内在联系,增强学生应用数学的意识,激发学生的学习兴趣。

  教学重点

  掌握圆柱体积的计算公式。

  教学难点

  圆柱体积计算公式的推导。

  教学方法

  实践探索

  ●课时安排

  1课时

  ●教学准备

  多媒体课件等

  ●教学过程

  一、引入

  圆柱体转化成近似长方体。

  (课件点击后出现:一个长方体的钢锭通过锻造形成一个与长方体高相等的圆柱体模具。) 通过学生观察,发现这两个物体的体积是一样的,还有什么是相同的?

  [设计意图说明:引导学生对所学知识的迁移,初步感知圆柱的体积计算与长方体的体积计算有关。]

  (揭示课题:圆柱的体积。)

  二、推导圆柱体积计算公式

  怎样用我们已有的知识来计算圆柱的体积?

  (学生可能回答:长方体的体积可以通过底面积×高得到,我想圆柱的体积是不是也可以通过底面积×高得到呢?)

  (媒体操作:点击后出现:沿着圆柱底面扇形把圆柱切开,得到大小相等的16块,拼成了一个近似长方体的演示过程。)

  我们把这相等的16块分成32块,64块,或更多,,那么拼成的立体图形就??

  (学生回答:就越接近于长方体了。)

  (媒体操作:点击后出现:将圆柱细分,拼成一个更接近于长方体的演示过程。) 通过观察,你知道了什么?

  (学生可能回答:长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。)

  (媒体操作:点击后出现:长方体的底面积等于圆柱的底面积,再点击出现:圆柱的体积=底面积×高,v=sh。)

  练一练:

  1.一根圆柱形木料,底面积为75cm2,长90cm。它的体积是多少?

  2.判断:

  一根圆柱形钢材,底面积是50平方厘米,高是2.1米。它的体积是多少?

  (出示下面几种解答方案,让学生判断哪些是正确的。)

  ① 50×2.1=105(立方厘米)

  ② 2.1米=210厘米,50×210=10500(立方厘米)

  ③ 50平方厘米=0.5平方米,0.5×2.1=1.05(立方米)

圆柱体的体积教学课件 篇10

  教材分析

  《圆柱的体积》是冀教版六年级数学下册的内容,在学生初步认识了圆柱体的基础上,进一步研究圆柱体的特征,让学生比较深入地研究立体几何图形,是学生发展空间观念的又一次飞跃。圆柱体是基本的立体几何图形,通过学习,可以培养学生形成初步的空间观念,为下一步学习“圆锥的体积”打下基础。

  学情分析

  六年级的学生已经有了较丰富的生活经验,这些感性经验是他们进一步学习的基础,本节课的学习过程正是让学生的感性经验上升到理性经验的过程,符合学生的年龄特征和认知规律,在这一过程中,能使学生体会到认识事物和归纳事物特征的方法,学会运用数学的思维方式去认识世界。

  教学目标

  知识与能力:通过推导圆柱体积公式的过程,向学生渗透转化思想,建立空间观念,培养学生判断、推理的能力和迁移能力。

  过程与方法:结合具体情境和实践活动,理解圆柱体积的含义。探索并掌握圆柱体积的计算方法,能正确计算圆柱的体积,并会解决一些简单的实际问题。

  情感态度与价值观:感悟数学知识的内在联系,增强学生应用数学的意识,激发学生的学习兴趣。

  教学重点

  掌握圆柱体积的计算公式。

  教学难点

  圆柱体积计算公式的推导。

  教学方法

  实践探索

  ●课时安排

  1课时

  ●教学准备

  多媒体课件等

  ●教学过程

  一、引入

  圆柱体转化成近似长方体。

  (课件点击后出现:一个长方体的钢锭通过锻造形成一个与长方体高相等的圆柱体模具。) 通过学生观察,发现这两个物体的体积是一样的,还有什么是相同的?

  [设计意图说明:引导学生对所学知识的迁移,初步感知圆柱的体积计算与长方体的体积计算有关。]

  (揭示课题:圆柱的体积。)

  二、推导圆柱体积计算公式

  怎样用我们已有的知识来计算圆柱的体积?

  (学生可能回答:长方体的体积可以通过底面积×高得到,我想圆柱的体积是不是也可以通过底面积×高得到呢?)

  (媒体操作:点击后出现:沿着圆柱底面扇形把圆柱切开,得到大小相等的16块,拼成了一个近似长方体的演示过程。)

  我们把这相等的16块分成32块,64块,或更多,,那么拼成的立体图形就??

  (学生回答:就越接近于长方体了。)

  (媒体操作:点击后出现:将圆柱细分,拼成一个更接近于长方体的演示过程。) 通过观察,你知道了什么?

  (学生可能回答:长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。)

  (媒体操作:点击后出现:长方体的底面积等于圆柱的底面积,再点击出现:圆柱的体积=底面积×高,V=Sh。)

  练一练:

  1.一根圆柱形木料,底面积为75cm2,长90cm。它的体积是多少?

  2.判断:

  一根圆柱形钢材,底面积是50平方厘米,高是2.1米。它的体积是多少?

  (出示下面几种解答方案,让学生判断哪些是正确的。)

  ① 50×2.1=105(立方厘米)

  ② 2.1米=210厘米,50×210=10500(立方厘米)

  ③ 50平方厘米=0.5平方米,0.5×2.1=1.05(立方米)

  圆柱体的体积教学课件篇二

  教学目标

  1.经历认识圆柱体积,探索圆柱体积计算公式及简单应用的过程。

  2.探索并掌握圆柱体积公式,能计算圆柱的体积。

  3.在探索圆柱体积的过程中,进一步体会转化的数学思想,体验数学的探索性和挑战性,感受数学结论的确定性。

  教学重点

  圆柱体积计算公式的推导过程。

  教学难点

  圆柱体积计算公式的灵活运用。

  教具准备

  圆柱体转化成长方体的模型。

  教学过程

  一、复习铺垫

  1.请同学们回忆一下什么是物体的体积。

  2.(出示幻灯片长方体)这是什么体?怎样计算它的体积?

  同样的方法复习正方体。

  3.长方体和正方体的体积可以用一个统一的公式来表示是怎样的?

  [复习旧知,为后面推导圆柱体积计算公式做铺垫]

  二、情境导入

  师:同学们,你们都知道自己的生日吗?你们都喜欢过生日吗?

  生:喜欢。

  师:为什么?

  生:有礼物,还有生日蛋糕。

  师:今天是亮亮和爷爷的生日,你们观察一下书的图片,发现了什么?

  生:亮亮的一家在一起过生日,亮亮和爷爷都有一个生日蛋糕,而且爷爷的生日蛋糕大,亮亮的生日蛋糕小。

  生:亮亮和爷爷的生日蛋糕都是圆柱形的.。

  师:同学们观察得都很仔细,那么你们说说,爷爷的生日蛋糕,意味着什么?联系我们刚学过的知识来说。

  生:生日蛋糕大,就意味着它的体积大,生日蛋糕小,就是它的体积小。

  师:你们真棒!那么想不想知道两个生日蛋糕的具体大小吗?今天我们就来探讨一个圆柱体的体积公式。

  三、推导、论证

  1.拿出两个不易分辨体积大小的茶叶筒。

  师:你们能说出哪个茶叶筒体积大吗?怎样比较两个茶叶筒体积的大小呢?

  让学生思考和交流。

  2.大家看圆柱的底面是一个圆形,在学习圆面积计算时,我们是把圆转化成哪种图形来计算的?(演示课件:圆转化成长方形)

  3.引发思考:我们能否把圆柱体也转化成学过的立体图形来计算它的体积呢?如果能,猜一猜能转化成哪种立体图形?

  4.师生合作。用教具把圆柱等分成16份,拼成一个近似的长方体。再把圆柱等分32份同样拼成一个近似长方体。观察两次等分的相同点和不同点:

  生:相同点:都可以拼成一个近似的长方体。

  不同点:等分的份数越多,就起接近一个长方体。

  5.同学们观察一下,拼成的长方体和圆柱体有什么关系?你们发现了什么?

  6.学生汇报讨论结果,同时板书。

  生:近似长方体的底面就是圆柱的底面积;近似长方体的高就是圆柱的高;近似长方体的体积就是圆柱的体积。

  7.根据学生的发现引导学生推导出圆柱的体积=底面积×高,用字母表示V=Sh。

  四、实际应用

  1.要求圆柱体积,必须知道哪些条件?(生:底面积和高)

  2.如果已知底面积和高,你们会求圆柱的体积吗?

  出示书中的例题:一根圆柱形的钢材,底面积是50平方厘米,高是1.5米。它的体积是多少立方厘米?

  3.学生读题,特别提示统一单位。学生自主计算后全班交流。

  4.反馈练习。P31页练一练1。

  练一练2:理解题意,使学生理解方钢的体积与锻造后的圆柱形体积相等,再自主解答。

  五、家庭作业

  测量你身边的圆柱的体积并向大家汇报你是怎样测量的?比一比看谁的方法最好?

圆柱的体积说课教学课件 篇11

  一、 把握教材,目标定位

  《圆柱的体积》是在学生初步认识了圆柱体的基础上,进一步研究圆柱体的特征,让学生比较深入地研究立体几何图形,是学生发展空间观念的又一次飞跃。圆柱体是基本的立体几何图形,通过学习,可以培养学生形成初步的空间观念,为下一步学习“圆锥的体积”打下基础。根据本节课的性质特点和六年级学生以形象思维为主、空间观念还比较薄弱的特点,我确定本节课的教学目标为:

  1、知识与能力:通过推导圆柱体积公式的过程,向学生渗透转化思想,建立空间观念,培养学生判断、推理的能力和迁移能力。

  2、过程与方法:结合具体情境和实践活动,理解圆柱体积的含义。探索并掌握圆柱体积的计算方法,能正确计算圆柱的体积,并会解决一些简单的实际问题。

  3、情感、态度、价值观:感悟数学知识的内在联系,增强学生应用数学的意识,激发学生的学习兴趣。

  教学的重点和难点:

  由于圆柱体积计算是圆锥体积计算的基础,因此圆柱体积和应用是本节课教学重点。其中,圆柱体积计算公式的推导过程比较复杂,需要用转化的方法来推导,推导过程要有一定的逻辑推理能力,因此,推导圆柱体积公式的过程是本节课的难点。

  二、 把握学情,选择教法

  (一)学情分析

  六年级的学生已经有了较丰富的生活经验,这些感性经验是他们进一步学习的基础,本节课的学习过程正是让学生的感性经验上升到理性经验的过程,符合学生的年龄特征和认知规律,在这一过程中,能使学生体会到认识事物和归纳事物特征的方法,学会运用数学的思维方式去认识世界。

  (二)、选择教法,实践课题。

  《新课程标准》指出:数学教学应联系现实生活,使学生从中获得数学学习的`积极情感体验,感受数学的力量。同时我紧密结合自己的课题“培养学生自主合作学习能力与学生数学素养的策略研究”、“在数学课上如何激发学生的学习兴趣”。通过教学实践,使学生学会自主学习和小组合作,培养学生的创新精神和小组合作及应用数学意识。因此,在本节课中,我认为运用活动教学形态,多媒体演示形态,采取“引导-合作-自主—探究”的教学方法,使每个学生都能参与到学习中,感受到学习的乐趣,从而突破本课的难点。

  三、 教学策略的选择。

  现代教育心理学认为:小学生思维的发展是从具体形象思维向抽象思维过渡的。因此,按小学认知规律从“具体感知-形成表象-进行抽象”的过程,我打算主要采用观察发现法、实验法,以及分组讨论、合作学习等形式,并运用多媒体课件辅助教学,让学生在观察、感知各种实物的基础上,动手操作,分组讨论、合作学习,教师恰当点拨,适时引导等方法及手段,激发学生的学习兴趣,调动学生的学习积极性,让学生通过动手操作、观察、实验得出结论,体现了以学生为主体、教师为主导的教学原则。

    四、说教法

  为了扫清学生认知上的思维障碍,在实施教学过程中,我采用以下教学方法:直观演示法和知识迁移法。不仅能够清楚地展现知识的形成过程,还能提高学生灵活运用知识的能力。

    五、说学法

  本节课我采用的学法有观察法和小组合作交流法

    六、说教学过程

  为了有效的突出重点、突破难点,我设计了以下教学环节。

  (一)复习旧知,揭示课题

  1、上课伊始先 出示一组立体图形(长方体、正方体、圆柱)。

  问:你会计算那些图形的体积?提出“圆柱的体积怎样计算?”从而揭示课题:这节课我们就来探讨圆柱的体积。

  (二)观察、质疑、大胆猜想

  师出示两组不同的圆柱,让学生说一说哪个圆柱大,由此引到圆柱也有体积。鼓励学生大胆猜想,并说明理由。这一环节调动了学生学习的积极性及强烈的探究欲望,学生为了验证自己的猜想是正确的,极力想办法,找出推导圆柱体积的方法。

  怎样证明圆柱的大小呢?圆柱的体积可能怎样计算呢?让学生利用自己的生活经验和原有的知识自然的想到圆柱的体积的大小与底面积和高有关,从而大胆的猜想出圆柱的体积公式。

  (三)演示操作,探究新知。

  实践是检验真理的唯一标准,根据学生的猜想,我提出以下问题让学生思考:1、可以把长方体的体积计算公式直接移植过来吗?2、圆柱和长方体有什么联系和区别?学生思考后就会发现圆柱和长方体都有高,但底面不同,如果能把底面转化成长方形就好了。然后让学生小组合作讨论交流如何把圆柱体转化成长方体,并让学生上台操作演示是如何转化的。

  同时引导学生观察转化前后两种几何形体之间的内在联系,圆柱的底面与长方体的底面有什么关系?圆柱的高与长方体的高又有什么关系?让他们把各自的发现在组内互相交流,在交流中探究出圆柱的体积的计算方法。为了加深学生对圆柱体积公式的理解,我又课件演示,沿着圆柱底面直径把圆柱切开,可以得到大小相等的16块,再拼在一起,可以得到一个长方体,进而可以想到把底面平均分成的次数越多平成的图形越接近于长方体。最后让学生小组内说一说圆柱体计算公式的推导过程,再指名说,根据学生的小结我板书:圆柱的体积=底面积×高。并引导学生用字母表示出来。

  整个探究过程充分调动学生的学习热情,激发求知欲望,调动学生的各种感官,引导学生完成“经历观察、实验、猜想、证明等数学活动过程”。让知识在观察、操作、比较中内化,实现由感性到理性,由具体到抽象,这种教学方法有助于突破难点,让学生感受到了成功的喜悦。

  关于难点的突破,我主要从以下几个方面着手:(1) 引导学生通过观察比较,明确圆柱体的体积与它的底面积和高有关。(2) 运用知识迁移的规律,启发引导,层层深入促进学生在积极的思维中获得新知识。(3)充分利用直观教具,师生互动,通过演示操作,帮助学生找出两种几何形体转化前后的关系。(4) 根据新旧知识的连接点,精心设计讨论内容,分散难点,促进知识的形成。

  (四)、教学例6

  在掌握了圆柱体积计算的方法之后,我安排例6让学生进行尝试练习,这样既可以调动学生的学习积极性和主动性,又可以培养学生学习新知识的能力,同时把所学知识转化为相应的技能。

  (五)、练习

  1.基础练习。通过练习,巩固新知识,加深对新知识的理解,

  2、拓展练习

  这道题的安排是对所学内容的深化,在掌握基础知识的前提下,培养思维的灵活性,同时深化教学内容,防止思维定势。

    七、说板书设计

  我的板书简洁清晰,一目了然,能够清楚的反映出本节课的知识。

  总之,本节课我是本着复习旧知——发现问题——提出问题——猜想假设——实践操作——解决问题这一条线进行教学的。放手让学生自己发现问题、解决问题,充分体现了学生的主体地位,让学生体验到了成功的快乐。

  我的说课到此结束,欢迎各位领导多提宝贵意见。谢谢!

【圆柱体积教学课件】相关文章:

《穷人》教学课件(15篇)07-29

免费教学课件(14篇)08-01

《圆柱的认识》课件(17篇)08-01

穷人教学课件(15篇)08-01

优秀教学课件(17篇)08-01

美术教学课件(30篇)08-01

数学教学课件(23篇)08-02