小学数学方程教学设计(11篇)
探索之门此刻向你敞开!这里有精心编撰的小学数学方程教学设计范文。它们是知识海洋中的明珠,等待你的发现与学习。每一次阅读,都是一次思维的碰撞和能力的提升。让我们一起在阅读的旅程中成长吧!
小学数学方程教学设计 篇1
《角的初步认识》:
教学目标
(1)初步认识角,知道角的各部分名称;学会用尺子画角。
(2)通过让学生观察、操作分析,培养学生的观察能力、动手操作能力和抽象思维能力,发展学生独立学习能力和创造意识。
(3)培养学生良好的合作精神。
教学重难点
学生对于角的认识往往只是借助于实物停留在感性认识阶段,对角缺乏系统的认识,所以本课时的重点是让学生形成角的正确表象,知道角的各部分名称,初步学会用直尺画角。难点是引导学生画角的方法。
教学工具
ppt课件
教学过程
(一)谈话引入课题
1、师:老师给大家带来了数学王国图形家族成员中的几个成员,大家还认识它们吗?黑板上画的正方形,三角形,圆形等。(学生回答)今天我们来认识图形家族中的另一个新成员:角,引入课题“角的初步认识”。今天我们就要学习“角的初步认识”。
2、老师板书:角的初步认识
(二)联系实际,引导探究
1、师:同学们对角一定都非常熟悉,(放PPT)让学生看图,这几个图形里都有角,同学们睁大你的眼睛看,这就是角。
放有关学校的情景图的幻灯片让学生找角。学生一一做答。
2、师:同学们真了不起,找到了这么多角。
3、师:那么,我们现在身边是不是也有很多角呢?同学们找找看,(请学生来指一指。)学生回答:课桌的角、课本的角、门和窗的角等等。
4、师:同学们找了那么多角,那么角是由哪几部分组成的呢?(放PPT)边放边说,角是由一个顶点两条边组成的,再放一遍,老师说顶点,边,边。然后板书:顶点、边、边。
5、师:我们都知道什么是角,也知道角的各个部分,那么角是怎么画出来的呢?同学们看大屏幕(放PPT),同学们看懂了吗?画角时,要先定顶点再画两条边。老师在黑板上再演示一遍。
6、仔细观察,一个角有几个顶点,几条边组成?(生答)由一个顶点和两条边组成。我们在表示角的时候,不能就这么点一下。看老师是怎么表示角的。(教师动作演示:一个顶点,两条边,再用手画)拿起你的小手,我们一起来指一指。现在,谁用这种方法来指一指这把尺上的角?(还有其他的角吗?)
7、师:想一想看,角可以怎么画?要注意什么?(学生回答)先画一个点,从这点起,用尺子向不同的方向画两条线就成了一个角。请同学们照这个方法画一个,试试。把你画的角的顶点与边指给同桌看。(一生板演,反馈时指出顶点和边即可。)
8,比较角的大小,放两个同样大小的角,但是边不一样长,提问学生,哪个角大,同学可能要说,边长的那个角大(放幻灯片),老师问学生是不是边越长角就越大哪?同学们看到了角的大小与边的长短没有关系,与它开口的大小有关。
9、师:再画一个和刚才大小不一样的角。请你为自己画的角打分。
10、折角:让同学们拿出自己准备的纸折几个角,同桌比较一下大小。再用一张圆形纸折,看学生能否折出角,老师巡视、指导。
(三)巩固拓展,课外延伸
1、师:刚才画了一个角,老师在这里再添一条线,现在这里有几个角了?(学生指,教师画弧。)
2、师:我这里还有一个长方形的图形,如果剪去一个角,请你猜猜还剩几个角?
3、师:你能告诉同伴们,今天你有哪些收获吗?
小学数学方程教学设计 篇2
教学目标:
1.在数实物的过程中,体验不同的数数方法,能用不同的方法数数。
2.结合"先估计再数"的数学活动,培养学生估计的习惯和能力。
3.感受数学与生活的联系,增强学习的数学的信心。
教学重点:体验不同的数数方法。
教学难点:能用不同的方法数数。
教学过程:
一、故事形式引入新课。
1、小朋友们,老师想给好朋友写封信,于是我就去买了一个信封,写好了信放在里边,贴好就去邮局邮信了,你们猜我的信邮出去了吗?
(学生说结果并说明理由)如果学生说不出是因为没贴邮票,教师加以引导。
2、教师继续刚才的故事:咱们书中有各种各样的邮票,小朋友帮老师选一张好吗?
二、教学新课。
(一)数邮票。
1.教师出示邮票图片,学生帮老师选一张自己认为漂亮的邮票。
2.这么多漂亮的邮票,有多少张呢?咱们来猜一猜。
(学生说一说自己的想法,猜猜有多少张)
1.师:你们想不想知道到底有多少张呢?
(学生用自己的方法来数一数)
2.小组交流数的结果。教师引导学生明白这些邮票的摆放是很有规律的,可以一排一排的数,即:10张、20张、30张、100张。
(二)、比赛的形式数珠子。
师:小朋友们,咱们来比赛,看谁的眼睛和脑子最快。好不好?
1.教师出示3组珠子的实物图片,让学生用自己的方法数。
2.评出数的快并且对的,评出前三名。
3.全班交流,让前三名同学先说出自己数的方法,再全班交流自己的数法。
(三)、数花生。
1.教师提出题目要求。
2.小组之内完成,并交流自己数的方法。
三、练一练。
1.出示图片,学生数。教师观察学生数数的方法,可以适当给予指导。
2.先让学生估计一下,再实际数一数。集体订正。
小学数学方程教学设计 篇3
教学内容:
用数学
教学目的:
1、亲历从生活中提炼出生活知识的过程
2、熟练地进行计算
3、感受生活与数学的联系,促进学生在情感态度等方面的乐趣。
教学准备:
课件
思维训练:
初步感觉数学与日常生活的紧密联系,体验学数学用数学的乐趣
教学过程:
一、创设情境
同学们,现在是什么季节?那咱们就到郊外去秋游吧。
二、合作探究(课件出示)
早上的太阳出来了,瞧,郊外的鲜花景色可真美啊,看远处还有几只可爱的猴子呢。
课件出示猴子图
左图有5只猴,右有2只猴,分步出示。
请你看图说出图意,你是怎样算出图上的猴子的?
你能独立列出算式吗?评价,你们认为谁说的好?
走过猴林又来到小河边,看,河里有几只鸭子呢?
课件出示鸭子图
生说图意
全班交流
独立列式计算
评价:你认为他说的有道理吗?
三、课中操
同学们都是聪明的孩子,有美丽的小鸟和小梅花鹿都在为你们跳舞呢。
四、做一做
梅花鹿图和蘑菇图
说出图意后独立列式
编题
小组内试着互相编题让其他同学们来解答。
P621314
口算比赛或扑克牌游戏
五、课堂总结
今天同学们都学到了什么?
小学数学方程教学设计 篇4
《两位数加两位数练习课》:
教学内容:
课本P13——-P15练习二
教学目标:
1、巩固两位数与两位数的加法运算,加深加法意义的理解,为退位减法的学习做准备。
2、让学生有机会在不断探索和创造的气氛中培养解决问题的能力,激发学习数学的兴趣。
3、引导学生在辨识的练习中体验数学学习的趣味性、挑战性,使不同的学生在数学学习的能力上得到不同的发展。
教学重点:
1、通过练习,使学生能比较熟练的进行两位数与两位数的加法运算,提高学生的运算技能。
2、培养学生运用所学知识解决实际问题的能力。
教学难点:
通过练习,使学生比较熟练而准确的进行两位数与两位数的加法运算。
教学准备:
实物投影、卡片
教学过程:
一、创设情景,引入新课
1、学习了关于两位数与两位数的加法运算。你们有哪些收获呢?指名汇报。
2、总结得真不错。今天这节课我们继续来研究,通过这节课的学习相信大家会有更大的收获。
〔设计意图〕:使学生明确学习的目标。
二、合作探索,巩固知识。
1、完成第14页练习二第5题。教师巡视、指导。做完以后请小朋友在小组内说一说是怎样计算的。
2、名汇报、并说明计算方法。计算两位数与两位数的加法时,要注意什么问题?指名回答。
3、完成第14页练习二第6题。这些计算对吗?和小组的同学说一说,把错误的改正过来。指名汇报,并说出错误应该如何改正。
4、完成第15页练习二第9题。教师巡视。指名汇报,并说明解题思路。
5、完成第14页练习二第7题。仔细读题,理解题意后完成填表。指名汇报,并说说是怎样计算的。观察表格,你了解到了哪些信息?说给你的同桌听一听。指名汇报。学生汇报,并说明解题思路。
6、完成第15页练习二第8题。有四只小白兔一起上山采蘑菇,现在它们正在为谁采的蘑菇最多而吵闹,你能帮帮它们吗?
7、怎样做才能解决它们的问题?指名汇报。
8、完成第15页练习二第10题。请在小组内讨论、交流完成。教师巡视。指名汇报。
〔设计意图〕:加深理解并使不同的学生得到不同的发展。
三、课堂总结:通过这节课的练习,你有什么新的收获?
学生从知识、方法上进行总结。
四、随堂练习
小学数学方程教学设计 篇5
教材分析
教材很注重学生数感的建立,主题图给了学生100这个数有多大的概念,通过估计和比较建立数感。教材还十分重视让学生实际操作,例题1、2的教学都是在学生的动手实践中进行,通过操作建立100以内数的概念,初步掌握数100以内数的方法。
学情分析
我班共56人,其中男生29人,女生27人。我班的很多孩子在未学习这一部分前,已经能数出100以内的数,而且在他们的生活体验中,常常也会接触到100以内的数。但在孩子们的头脑中,还没有100以内数的概念,这一课教学就是要帮助孩子建立100以内数的概念,为以后学习数学的其它知识奠定十分重要的基础。
教学内容
通过数白羊图,初步培养学生的估算意识和估算能力。通过例1数实物(糖,小棒,方块)等操作实践活动使学生整体感知100,且知道10个一是十,10个十是一百。通过例2
教学目标
1.知识与技能:能运用不同的方法正确数出数量在100以内的物体的个数,建立100以内数的概念,掌握100以内的数是由几个十和几个一组成的。
2.过程与方法:引导学生观察、操作,初步体验数与生活的密切关系,培养学生的主动探究精神。
3.情感态度与价值观:培养学生的估算能力及探索观察能力。与实际生活相联系,让学生体会到数学知识来源于生活,服务于生活,感受数学就在身边。
教学重点
熟练掌握100以内各数的组成。
教学难点
数数时接近整十数到整十数的过渡;理解100以内数的组成。
教学过程
一、创设情境,导入新课
1.师:今天老师给小朋友们带来了礼物,表现好的同学会得到一颗星星。(展示100颗星星)聪明的孩子,请你试着估计一下,大约有几颗?并说明理由。
揭示有100颗星星。(让孩子们说出估算的方法)
想一想:如果把这100颗星星送给全班同学作礼物,每人一颗够不够?为什么?
2.在具体情境中复习20以内数的数法
师:同学们,你们喜欢草原吗?今天,老师想和你们一起去大草原看一看。
书本第33页百羊图,蓝天下一望无际的大草原多美呀!小精灵聪聪和小伙伴在草原上玩耍,这时来了两群羊(20只),小精灵有一个问题想请大家帮忙:同学们,你们知道来了多少只羊吗?(学生数完后点名回答)
3.整体感知100有多少
过了一会,草原上又来了许多群小羊。小精灵问:同学们,你们能不能估计一下,草原上大约有多少只羊呢?
在学生观察、估出小羊的只数后,请学生回答估的结果。
4.总结、揭示课题。
刚才有很多同学猜大概是100只,老师也认为大概有一百只,但是不是真的有一百只呢?你们会数出来吗?这节课我们就一起来学习数数和数的组成。(板书课题)
二、探究新知
1.数出数量是100的实物。交流数数方法
(1)师:每个小组桌子上都有几种东西(学具,数量都在100以上),也请小朋友数一数,每人选你喜欢的一种,正好数出100,还要想办法,怎样摆放能让人一眼就看出是100。
(2)学生操作数出数量是100的实物(100根小棒、100颗小石头、100颗花生、100个练习本、100块糖)。表扬在数数过程中合作得好又数得准的小组,然后请几个小组派代表上台汇报本组的数法。
(可能出现情况:1个1个地数,2个2个地数,5个5个地数,10个10个地数。)
师:怎样数出100的?(一个一个地数,10个放一堆;两个两个地数,20个放一堆;五根五根地数,10根扎一捆……)
你数出的100里有几个十?(或几个二十?几个五十?)
(3)师:很多同学选择了10个一堆或10根一捆进行数数,觉得这样又好数,又非常清楚。
请观察一下,十根扎一捆,这里一共有多少根小棒?(黑板贴出十根十根扎好的100根小棒)
你怎么看出来的?(10个一是十,有10个十,10个十是100。)
(板书:10个十是100)
(4)小结:10个十是100。
2.做一做
(1)完成教材35做一做第1小题
学生边摆学具边从五十七数到六十三,再从六十三数到七十二。(指导学生每数满十就扎一捆或放一堆,渗透组成知识。
(2)从七十二数到一百。(同桌一个接一个地数)
(3)完成做一做第2小题
数一数小猪吹了多少个泡泡?
选择自己喜欢的方式数泡泡。
反馈:一个一个地数、2个2个地数、5个5个地数……
3.两位数的组成
讲授35页例2:
(1)师:手拿7捆小棒,这里一共有多少根小棒?
生:有七十根。
师:你是怎么看出来的?
生:一捆小棒是1个十,7捆小棒就是七个十,7个十就是七十。
说一说:七十是()个十组成的。
(2)师:那现在我需要46根捆小棒,应该怎么摆呢?请同学们帮我用你们的学具摆一下。
生:拿4捆再加6根。
师:为什么这样拿啊?
生:应为4捆小棒是4个十,6根小棒是6个一,合起来就是四十六。
说一说:四十六是()个十和()个一组成的。
(3)完成35页例2的做一做
看一看,想一想,再填一填。全班订正:三十五是()个十和()个一组成的
3.让学生同桌合作,一人任意说出两位数,另一个人说说它是由几个十、几个一组成的?然后互换。
三、巩固与发展
1.数一数,看谁数得又对又快。
(1)我们班有()人,男生()人,女生()人。
(2)我们班有()张桌子,()椅子
2.抢“100”的游戏
用对口令的方式,一人说一个数,另一个人接着说下一个数,看谁说到100谁就算胜了。组织学生做这个抢100的游戏,一方面提高学生数数的兴趣,另一方面让学生在数数活动中探索100以内数的排列规律。
四、小结
组织学生小结:让学生用自己的话说一说本节课学习的内容。在学生较凌乱叙述的基础上教师概括出本节课所学的知识。
五、布置课外任务
师:生活中100以内的数多极了,咱们在课堂上可没法说完,课后请你们找一找,或者数一数,哪儿有100以内的数。
课后数数主题图中小羊的只数,每数十只圈一下,看看到底有多少只羊,检验自己刚开始时估的对不对。
六、板书设计
数数数的组成
1个1个地数,2个2个地数,5个5个地数,10个10个地数
10个一是十,有10个十,10个十是100
七十是()个十组成的
四十六是()个十和()个一组成的
小学数学《简易方程》教学设计 篇6
教材内容:
人教版小学数学第十册《解简易方程》及练习二十六1~5题。
教材简析:
本节课是在学生已经学过用字母表示数和数量关系,掌握了求未知数x的方法的基础上学习的。通过学习使学生理解方程的意义、方程的解和解方程等概念,掌握方程与等式之间的关系,掌握解方程的一般步骤,为今后学习列方程解应用题解决实际问题打下基础。
教学目标:
(1)使学生理解方程的意义、方程的解和解方程的概念,掌握方程与等式之间的关系。
(2)掌握解方程的一般步骤,会解简单的方程,培养学生检验的习惯,提高计算能力。
(3)结合教学,培养学生事实求是的学习态度,求真务实的科学精神,养成良好的学习习惯。渗透一一对应的数学思想。
教学重点:
理解方程的意义,掌握方程与等式之间的关系。
教具准备:
天平一只,算式卡片若干张,茶叶筒一只。
教学过程:
一、创设情境,自主体验
本课以游戏导入,通过创设学生感兴趣的学习情境,以激趣为基点,激发学生强烈的求知欲望。让学生在操作、观察、交流等活动中感知平衡,自主体验,积累数学材料,为更好地引入新课,理解概念作铺垫。并且无论是生活中有趣的平衡现象,还是天平称东西的实际状态,都无不放射出科学的光芒,它们带给学生的不仅仅是兴趣的激发,知识的体验,更有潜在的科学态度和求真求实的精神。
二、突出重点,自主探索
理解方程的意义,掌握方程与等式之间的关系是本课教学的重点,让学生通过列式观察,自主探索,分析比较,逐次分类,讨论举例等一系列活动去理解方程的意义,掌握方程与等式之间的关系。使学生把知识探究和能力培养溶为一体,锻炼了学生科学的思维方法,使学生学得主动,学得投入。同时层层深入的设疑和引导也渗透了教师对学生科学思维的鼓励和培养,使学生在探索与实践中不断亲历求知的过程,如剥茧抽丝般汲取知识的养分。
三、自学思考,获取新知
在教学解方程和方程的解的概念时,通过出示两道自学思考题
(1)什么叫方程的解?请举例说明。
(2)什么叫解方程?请举例说明。”改变了以示范、讲解为主的教学方式,让学生带着问题通过自学课本,将枯燥乏味的理论概念转化为具体的例子加以阐明,既培养了学生独立思考的能力,也解决了数学知识的抽象性与小学生思维依赖于直观这一矛盾。
正是基于以上考虑,在教学解方程的一般步骤和检验方法时,也采用了让学生通过自学来掌握检验的方法及规范书写格式。
四、使用交流,注重评价
要探索知识的未知领域,合作学习不失为一条有效途径。新的教学理念使合作学习的意义更加广泛,有生生合作、师生合作等等。生生合作有助于相互验证、集思广益。师生合作体现在“师导”,尤其在学生思维受阻,关键知识点的领会上,在本课中,有多处让同桌互说互评互查的过程,合作的力量必将促使学生认知水平的提高,自评与互评相结合的评价方式也将更好的有利于学生端正学习态度,掌握科学的学习方法,促进良好的学习习惯的形成。
小学数学《简易方程》教学设计 篇7
教学内容:
数学书P59及“做一做”,练习十一第5—7题。
教学目标:
1、结合具体图例,根据等式不变的规律会解方程。
2、掌握解方程的格式和写法。
3、进一步提高学生分析、迁移的能力。
教学重难点:
掌握解方程的方法。
教学过程:
一、导入新课
前面,我们学习了等式保持不变的规律,等式在哪些情况下变换仍然保持不变呢?等式这些规律在方程中同样适用吗?完全可以,因为方程就是等式,今天我们将学习如何利用等式保持不变的规律来解方程。板书:解方程。
二、新知学习
(一)教学例1
出示例1,从图中可以获取哪些信息?图中表示了什么样的等量关系?盒子中的皮球与外面的3皮个球加起来共有9个,方程怎么列?得到x+3=9
要求盒子中一共有多少个皮球,也就是求x等于什么,我们该怎么利用等式保持不变的规律来求出方程的解呢?
抽答。
方程两边同时减去一个3,左右两边仍然相等。板书:x+3—3=9—3
化简,即得:x=6
这就是方程的解,谁再来回顾一下我们是怎样解方程的?
左右两边同时减去的为什么是3,而不是其它数呢?因为,两边减去3以后,左边刚好剩下一个x,这样,右边就刚好是x的值。因此,解方程说得实际一点就是通过等式的变换,如何使方程的一边只剩下一个x即可。
追问:x=6带不带单位呢?让学生明白x在这里只代表一个数值,因此不带单位。
要检验x=6是不是正确的答案,还需要验算。怎么验算呢?可抽学生回答。
板书:方程左边=x+3
=6+3
=9
=方程右边
所以,x=6是方程的解。
小结:通过刚才解方程的过程,我们知道了在方程的左右两边同时减去一个相同的数,左右两边仍然相等。不过需要注意的是,在书写的过程中写的都是等式,而不是递等式。
(二)教学例2
利用等式不变的规律,我们再来解一个方程。
出示方程:3x=18,怎样才能求到1个x是多少呢?同桌的同学互相讨论,如有问题,可以出示书上的示意图帮助分析。
抽答,在方程两边同时除以3即可。为什么两边同时除以的是3,而不是其它数呢?刚好把左边变成1个x。让学生打开书59页,把例2中的解题过程补充完整。
展示、订正。
通过,刚才的学习,我们知道了在方程的两边同时减去一个相同的数或同时除以一个不为0的数,左右两边仍然相等。这是我们解方程常用的两种方法,想不想用它们来试一试呢?
(三)反馈练习
1、完成“做一做”的第1题,先找到等量关系,再列方程,解方程。集体评讲。
2、思考“想一想”:如果方程两边同时加上或乘上一个数,左右两边还相等吗?依据是什么?等式保持不变的规律。
试着解方程:x—2.4=6,x÷9=0.7(强调验算)
(四)课堂作业:“做一做”第2题。
三、课堂小结。
这节课学习了什么?讨论:什么时候应该在方程的两边加,什么时候该减,什么时候该乘,什么时候该除呢?
四、作业:练习十一5—7题。
小学数学《简易方程》教学设计 篇8
教学内容:
教科书第109页的例2、例3,完成第109页下面的“做一做”中的题目和练习二十七的第1~4题。
教学目的:
使学生理解和初步学会ax±b=c这一类简易方程的解法,认识解方程的意义和特点。
教学重点:
会ax±b=c这一类简易方程的解法,认识解方程的意义和特点。
教学难点:
看图列方程,解答多步方程。
教具准备:
电教平台。
教学过程:
一、导入
出示三个小动物,让学生围绕三个小动物提提出问题进行学习。
二、新课
1、教学例2。
出示小老鼠的问题:
出示例2。先让学生自己读题,理解题意。
教师:这道题的第一个要求是“看图列方程”。我们来共同研究一下,怎样根据图意列出方程。我们学过方程的含义,谁能说说什么是方程呢?
学生:含有未知数的等式叫做方程。
教师:那么,要列方程就是要列出什么样的式子呢?
学生:列出含有未知数的等式。
教师:观察这副图,从图里看出每盒彩色笔有多少支?(x支。)3盒彩色笔有多少支?(3x支。)另外还有多少支?(4支。)一共有多少支彩色笔?(40支。)那么,怎样把这副图里的数量关系用方程(也就是含有未知数x的等式)表示出来呢?
学生:3x+4=40。
教师:很好!谁能再说说这个方程表示的数量关系?
学生:每盒彩色笔有x支,3盒彩色笔加上另外的4支,一共是40支。
教师:对!我们现在来讨论一下如何解这个方程。如果方程是x+4=40,可以怎么想?根据什么解?
学生:可以把原方程看作是“加数+加数=和”的运算,因此,根据“加数=和-另一个加数”来解。
这样也可以根据“加数=和-另一个加数”来解。得出3x=40-4,再得出3x=36。
教师在黑板上板书出解此方程的前两步,下面的解法让学生自己做在练习本上。做完以后,集体订正。得出方程的解以后,要求学生在算草纸上进行检验。请一位学生口述检验过程,集体订正。
教师小结例2的解法:解答例2,先要根据图里的数量关系列出方程,即列出含有未知数x的等式;然后解这个方程。解方程时,关键是要先把3x看作是一个数,根据“加数=和-另一个加数”求出3x等于多少,再求x等于多少就得出方程的解是多少。
2、教学例3。
小猫提出的问题:
教师出示:解方程18-2x=5。然后让学生自己在练习本上解。做完以后,教师指名让学生回答问题。
教师:这个方程你是怎么解的?先怎样做,再怎样做,根据是什么?(先把2x看作一个数,再根据“减数=被减数-差”得出2x=18-5,2x=13,x=6.5。)
教师根据学生的发言,把解方程的过程出示。接着,教师出示例3:解方程6×3-2x=5。
教师:例3的方程与我们刚才解的方程,有什么相同点,有什么不同点?
学生:相同点是:等号右边都是5,等号左边都要减去2x;不同点是:18-2x=5的等号左边只有一步运算,而6×3-2x=5的等号左边有两步运算。
教师:6×3-2x=5,等号左边的两步运算,第一步是算6×3,就等于18。这样方程6×3-2x=5就变成了18-2x=5。所以,解方程6×3-2x=5,要按照运算顺序,先算出6×3的值。那么,下一步该怎样做呢?刚才我们已经做过,自己把方程6×3-2x=5解出来。
让学生在练习本上解例3,同时请一位同学在黑板上解题。做完以后,集体订正。
教师小结例3的解法:解答例3,要先按照四则运算的顺序,把方程中包含的计算算出,再把2x看作一个数,根据四则运算各部分间的.关系来求解。
3、课堂练习。
做教科书第109页下面“做一做”中的题目。
先让学生独立做在课堂练习本上,教师行间巡视,检查学生解方程的过程是否正确,发现错误及时纠正。做完以后,指名让学生说一说解方程的根据和过程。
三、巩固练习(小兔子提出的问题)。
1、做练习二十七的第1题第一行的两小题。
先让学生独立做在练习本上,教师行间巡视,仍然要注意检查学生解方程的过程、书写格式及检验的过程是否正确,发现错误及时纠正。做完以后,每一题让学生说一说解的过程和解题的根据。
2、做练习二十七的第2题。
教师用小黑板或投影片出示题目,让两位学生到黑板前来解题,其他学生在练习本上解题。做完以后,指名让学生比较这两个方程的异同点,解法的异同点。
3、做练习二十七的第4题。
让一位学生读题后,教师提问:这道题应该怎样做?能不能先解方程,分别求出两个方程的解,再判断上面的五个数中哪两个数是这两个方程的解?(可以。)
让学生独立做在练习本上,做完以后,集体订正。
四、小结。
出示课题:解简易方程。
小学数学《简易方程》教学设计 篇9
1.使学生初步理解方程的意义,知道方程的解、解方程的意义和验算的方法,能正确解方程。
2.培养学生的分析比较能力和再创造意识。
3.培养学生认真审题,自觉检验的良好学习习惯。
过程预设:
一、情境创设
六一儿童节快到了,文峰大世界推出学生用品大展销,这里是选取其中的几件。
商品上标价分别为(字母表示的为商品价格不知道的):
上衣 65元 巧克力 y元
钢笔 40元 皮鞋 60元
书 x元 文具盒 20元
如果拿100块钱去买商品,用钱的结果会有哪几种不同的情况?
(三种情况,大于、小于、等于)
如果请你自己购物的话,你准备选择什么 把你的购买情况与用钱结果用式子表示出来。纯茨隳苄炊嗌伲?BR>选取生列出的算式: 65+40=100 65+x<100 y+60 x+y等等
二、观察讨论:把上面的式子分类,你认为可以怎么分?
1.小组讨论,介绍如何分。
2.教师指出:像这些用等号连起来的算式我们都叫它等式。而含有未知数的等式叫方程。师板书。
3.今天我们就来研究方程。(板书课题)
4.提问:这里哪些算式是方程?根据学生的回答师用集合圈圈出方程。
知道了什么是方程,你能写出一些方程来吗?试试看,在随练本上写出一个方程。
5.汇报:说说你写的方程是怎样的?
提问:如65+x是方程吗?为什么?
由此看出:具备方程的两个条件是什么?
师:65+x=100、65+58=123都是等式,一个是方程,一个不是方程,方程和等式之间有什么关系?
可以用一句话或者图来表示吗?
三、方程史话
说起方程,老师这儿还有一个故事呢:我们都知道《九章算术》是我国著名的《算经十书》之一,是十部算经中最重要的一部。《九章算术》共收有246个数学问题,绝大多数内容是与当时的社会生活密切相关的。其中方程术是《九章算术》最高的数学成就,是它在世界上最早提出了方程的概念,并系统地总结了方程的解法,比我们现在所熟知的希腊丢番图方程要早三百多年。
《九章算术》反映出我国古代数学在秦汉时期就已经取得在全世界领先发展的`地位,作为一部世界科学名著,它在隋唐时期就已传入朝鲜、日本。现在,它已被译成日、俄、德、法等多种文字在世界上广泛流传。
听了这段话,你有什么感想?
四、解方程
1.师:大家知道这些方程中的未知数的值是多少吗?你是怎么知道的?
生练习求未知数,指名板演。(两题)
师讲解:这是我们学过的求未知数x,当x=?时这个方程两边才相等,所以我们把x=?就叫做是这个方程的解。提问:另一道方程的解是多少?
刚才我们求这个方程的解的过程就是解方程。因此,我们在解方程时写个“解”字。师补充写解。
其实我们以前求未知数x的过程,实际上就是在解方程。
2.选出方程的解,并画上横线。
X+8=30 (x=38 x=22)
X=5是方程( )的解。15x=3 6x=30
12-x=8 (x=4 x=20)
提问:你是怎样找出方程的解的?
3.检验
师:我们在解方程的时候,也可以用这种代进去的方法算一算,如果它的等式结果和右边相等,说明是正确的,这种就是方程的检验方法。
请大家把书翻到80页,看一下方程的检验过程。
需要注意的是检验的格式,自己任意挑选一题进行检验。
五、巩固练习
做个游戏,好吗?
1.分组出五题判断题,写出式子,可以是方程,也可以不是方程的,考考其他组,看看哪个组编的题最好。
2.求出最好这组中的两道方程中的解,并检验。
小学数学方程教学设计 篇10
《方程的意义》一课是人教版小学数学五年级上册第四单元第二节的内容。学生在《方程的意义》之前,在一、二年级的数学学习中均有填算式中的括号,也就是未知数,对于方程的意义有了一定的知识渗透,在本单元中,学生已经学习了用字母表示数,表示数量,表示数量间的关系,都与本节课有着密切的关系。而方程这部分知识,在初等代数中占有重要的地位,对于小学生来说,从具体事物的个数抽象出数是认识上的一个飞跃和,现在由具体的、确定的'数过渡到用字母表示抽象的、可变的数,更是认识上的一个飞跃。而且在用字母表示未知数的基础上,使学生解决实际问题的数学工具,从列出算式发展到列出方程解,这又是数学思想方法认识上的一次飞跃,它将使学生运用数学知识解决实际问题能力提高到一个新的水平。方程这部分的学习,能使学生摆脱算术思维方法中的某些局限性,为进一步学习代数知识帮好认识的准备和铺垫。学生从算术方法解决问题到代数方法解决问题的过渡,这节课的概念学习也是后面学习解方程的方法、用方程解决问题的基础,因此,在教学中起着承上启下的作用。
根据学生的已有知识,以及《方程的意义》的教学内容,我确立了如下的教学目标:
1、了解方程的意义,弄清方程与等式的联系与区别。
2、在自主探究的学习过程中,结合教学内容帮助学生建立分类思想,进一步感受数学与生活之间的密切联系。
3、培养学生的动手操作能力、抽象概括能力,以及在合作学习中的的合作探究能力。
教学重点是在实践中了解方程的意义,并能根据方程的意义判断出方程,根据数量关系列出正确的方程。
下面我就将本节课的教学过程及设计意图向大家做以汇报。
一、谈话导入:
同学们,你们小时候玩儿过跷跷板吗?(同时出示图片)
对于这个游戏的玩儿法与经验,谁能向大家介绍一下?
其实在生活中,还有一样物品与跷跷板长得很像,它可不是用来游戏的,而是用来测量的。你们认识它吗?(出示天平)
【跷跷板与天平有许多相似之处,它们都是在中间有一个支点,都靠力臂两端的重量来达到平衡,都是根据杠杆的工作原理。但是对于学生而言,天平比较陌生,而跷跷板与学生的生活密切相关,因此,以此导入,能引起同学们的兴趣,学生回顾玩儿跷跷板的经验,利用已有的生活经验去为认识新事物奠定基础,形成表象】
二、认识并使用天平
教师介绍天平:
这就是一台托盘天平,它是用来测量比较轻的物体的仪器。这两个是天平的托盘,一边放物品,另一边放测量物体的砝码,砝码上都有质量标志。我们通过不断调试砝码,直到中间的指针指向中间为两边平衡,物体的质量就是砝码质量之和。
教师示范:
下面我们就一起来进行实际应用天平来测量一下。
首先我们来应用一下,检查一下砝码的质量是否准确。
在天平的左边放置20克和30克的砝码各一个,右边我们应该放置一个50克的砝码。看一下,天平中间的指针正好指向刻度盘的中心,说明天平保持平衡了。
看到天平,你会用等式表示天平两边物体的质量关系吗?
20+30=50
这有一个空的水杯,我们先来测量一下它的重量。
请你估计一下它的重量。我们来试一试。
通过测量,我们得知,水杯的重量是100克。
现在我们缓缓向水杯里倒水,你发现天平怎么样了?
你知道我倒了多少水吗?水的质量是未知的,我们可以用字母x表示,那么现在天平的状态还能用等式来表示了吗?
100+X>100
我们继续测量水的质量,同理得出:
100+X>200
100+X<300
100+X=250
这几个算式都以板书形式呈现。
【在利用天平写出算式的过程中,我最开始设计的是给每个小组一台天平,让学生实际操作,测量物品的质量,但在实际教学中,发现天平中砝码过小,学生操作起来不方便,而且大部分时间都花费在调节砝码的过程中,而不是讨论方程的意义,与本节课的重难点相背离,因此在修改中,我们还是尊重了教材,以教师的示范为主,我们吸取了学生试验的教训,为了让学生看得真切,我们放弃了实物操作,选择了电脑课件的演示。】
三、认识方程
1、根据天平写算式并分类
刚才我们测量了水的质量,在测量过程中,我们出现了这几种情况,可以用不同的算式表示天平左右两边的位置关系,你明白了吗?下面老师这儿就有几组天平测量的过程,首先请你根据天平写出算式。然后把这些算式按一定的原则分分类,最后在小组内交流一下你们的结果。
【《20xx年版数学课程标准》中将学生的“双基”增加为“四基”,其中“领悟数学基本思想”是新增加的内容。数学思想是数学知识和方法在更高层次上的抽象与概括,如抽象、分类、归纳、演绎、模型等。在传统教学中,我们比较提倡对概念的演绎,清楚地记得,十年前数学书对方程概念的呈现是这样的:通过天平保持平衡写出等式,然后得到结论。旧的数学课强调的是对概念的理解和应用,而新的课程标准中提倡要在数学学习中,使学生领悟数学的基本思想,积累数学的基本活动经验。因此,新的教材中增加了不等式,增加了不含未知数的算式,通过通过类比、分析、归纳,形成数学模型,在头脑中形成表象,再用严谨的语言来表述。
在本节课的设计中,我利用天平这一实物图,将数学知识置于情境之中,让学生参与到数学活动中,写出等式及不等式,含有未知数的和不含未知数的,。学生通过分类对比,形成表象,教师引出概念,使学生亲历知识的生成过程。】
2、交流汇报:
学生边说,教师边板书:
等式 不等式
含有未知数 3x=180 50+2x>180
100+x=50x3 80<2x
不含未知数 50x2=100 100+20<100+30
根据板书,教师讲解:像 3x=180、100+x=50x3这样的含有未知数的等式叫做方程,这就是我们今天所要学习的内容。板书课题。
反问:什么样的算式叫方程呢?一个算式要成为方程有哪几个条件?
【通过对比,学生能在脑海中形成一个清晰的方程表象,建立方程的模型,因此在教师讲授概念时,学生很容易地就接受了。教师是学习的组织者、引导者和合作者,但并不意味着教师可以什么都不讲,对于方程这个新知识,如果老师不告诉学生,学生是不能凭借旧知自己总结出来的,因此在概念的呈现上,我选择了讲授法。】
四、应用概念
同学们,根据你对方程的理解,你能自己写出几个方程吗?
判断,他们写得都对吗?
黑板上刚才我们写得这些算式,有方程吗?
【通过前面学生的活动归纳出概念,还要对概念进行演绎。练习题中,我先让学生自主写方程,就是考查学生对方程概念的理解,然后再进行判断的基本练习。】
五、方程产生的文化背景
早在三千六百多年前,埃及人就会用方程解决数学问题了。在我国古代,大约两千年前成书的《九章算术》中,就记载了用一组方程解决实际问题的资料。一直到三百年前,法国的数学家笛卡儿第一个提出用x、y、z等字母代表未知数,才形成了现在的方程。
【数学是人类文化的重要组成部分,任何一个数学知识的形成都凝聚着人类智慧与汗水。因此学生在学习前人给我们带来的经验同时,也要了解数学文化。通过这部分知识的讲解,学生对方程的产生有了初步的印象。】
六、拓展延伸
在拓展延伸中,我设计了这样几个题目:
1、 根据线段图写方程
2、 根据数量关系写方程
3、 判断是否是方程
4、 方程与等式的关系
七、作业:
利用课余小组时间用天平测量物体的重量。
再想,天平两边可以如何添加,能使天平继续保持平衡呢?
【课堂上的时间是有限的,虽然在前面的教学中,学生没有使用天平 ,但对天平都充满了好奇,因此,我把用天平测量物品的质量这个环节延伸到课下,学生不仅满足了自己的愿望,而且也是对本节课知识的巩固,我还设计了“天平两边可以如何添加,能使天平继续保持平衡呢?”发散学生的思维,也为下节课《天平保持平衡的性质》奠定了基础。】
小学数学方程的意义教学设计 篇11
1.出示实物天平。
(实物天平比较小,用屏幕上的天平来模拟实验。)
2.两个大苹果和一个小西瓜,它们的重量我们还不知道,如果要分别放在两个盘上,猜猜看,天平可能会哪边重呢?
(说明两边的重量可能有三种不同的关系。)
用式子描述重量之间的相等关系。
3.一场篮球比赛,红、蓝两队打得还挺激烈的,你能来描述两队的情况吗?
用式子表示两队比分的关系。
红队的教练啊也关注了这个情况,马上叫了一次暂停,并作了战术上的调整,一上场的一段时间里,只有红队连续得了分,请你猜一猜,两队的情况会怎样呢?
用式子来表示比分的三种关系。
4.创设四个情景。
(1)每个情景中数量之间有什么关系?
(2)你能用关系式清晰地来描述吗?
二、引导分类,概括方程概念。
刚才我们对情景的描述得到了很多式子。
200+200=400 18 < 23 18+<23>23 18+=23
280 > 100 120 < 4 25+=70 22y+720=1050
1.学生尝试第一次分类。
可能有几种不同的分法。
(1) 看是否是等式。
(2) 看是否含有未知数。
……
2.学生尝试第二次分类。
得到四组不同的式子。
3.描述每一组的特征。
4.引导概括方程概念。
含有未知数的等式叫方程。
三、抓等量关系,体会方程本质。
1.演示动态平衡。有等量关系,能用方程表示
2.出示情景(没有等量关系,不能用方程表示。)
出示情景120元正好买2个玩具企鹅。(有等量关系,能用方程表示)
3.通过今天这节课,你学到了什么呢?
1.周老师从无锡到徐州来上课。
(1)线段图。
(2)我乘火车从无锡站开出,每小时行千米,7小时到达徐州站。无锡站到徐州站的铁路长525千米。
(3)到了徐州站,我买了3枝圆珠笔,每枝元,付出20元,找回2元。
2.情景图。
本届奥运会上,中国台北队获得了枚金牌,中国队获得了32枚,日本队获得y枚。男孩说:“中国台北队金牌数的16倍正好等于中国队的金牌数。”女孩说:“日本队的金牌数等于中国台北队的8倍。”
3.开放题。
小芳集邮共260张,小明集邮共300张。怎样才能使两人的集邮张数一样多? (用方程表示)
“方程的意义”教学设计的说明
在新课程背景下,学生概念的形成应具有更大的涵盖面、影响力和迁移性,由此通过自我理解、生成、连接,形成自己的知识系统。本课《方程的意义》的教学设计,基于对数学概念及概念教学的再把握,相对于传统的教学,有了比较大的变化。这是我们的尝试,也是一种思考和探索。
整体的把握:
数学概念不仅是局部的,而且是全局的;不仅是静态的,而且是动态的;不仅是学科的,而且是儿童的。所以对方程概念及其教学应从多个层面加以把握:
形式层面——含有未知数的等式(是关系的一种)。这是一种静态的结论。
发现层面——经历方程模式的生成过程,它来源于现实又回到现实,寻找等量关系并用方程来表示。这是一个动态的过程。
直观具体层面——举出正例或反例。
直觉层面——一种数学的意识、一种方程的`感觉。
这样才能形成一个有力的认知结构(其中包含知识结构、方法结构和经验结构)
目标的把握:
经历从现实问题到方程概念建立的过程,(方程是从现实生活到数学的一个提炼过程,一个用数学符号提炼现实生活中特定关系的过程。)体会方程是刻画现实世界的数学模型。
渗透方程思想的三个方面:设立未知量,将其当作已知数,参与到问题中事实的表达;建立等量关系,用方程表示(方程是说明两件事情是等价的);区别未知量与己知量,只要经过运算,就可用已知数表示未知量。
过程的把握:
统揽全局基础上的局部聚集,突出“知识胚胎”的生成。学生的认识不是线性发展的,而是整体式推进的。各个部分知识的拼装不可能产生真正意义上的有生命的知识,只有胚胎式的整体推进才能领略到知识生命的意蕴。所以概念教学须克服原有的分割式、部分式教学,突出“知识胚胎”的生成。传统教学注重从部分到整体,形成一个结构。现代教学应更重视从整体到部分再到整体,形成更有意义和活力的结构。
本课方程概念的教学,力图围绕目标形成一个包括知识技能、思维方式和方程思想的整体结构,在其后的教学中再对方程的各个部分进行深化,形成所谓同心圆结构的知识生成模型,这是儿童认识的规律,也许可以解决数学教学中知识太“散”的问题。
经历“问题情景——数学模型——解释与应用”的全过程。从“问题情景——数学模型”展开数学化和结构化的过程。再从“数学模型——解释与应用”展开结合现实寻找意义的过程。方程整体概念生成必须经历这样的过程,才能使目标的各个部分协调地组合在一起,产生一种数学的意识和方程的观念。
参考文献:
(1)史宁中、孔凡哲 著.方程思想及其课程教学设计——数学教育热点问题系列访谈录之一. 《课程.教材.教法》第24卷第9期,
(2)林永伟、叶立军 编著.《数学史与数学教育》第65页. 方程产生历史的启示意义。
(3)《全日制义务教育数学课程标准(实验稿)》北京师范大学出版社。
【小学数学方程教学设计】相关文章:
小学数学教师教学设计参考(8篇)08-01
【必备】小学一年级数学教学设计18篇08-03
小学五年级上册数学教学设计(精选19篇)08-04
小学数学教学反思(30篇)08-04
小学数学教学论文(29篇)08-04
小学数学的教学反思(30篇)08-05